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Abstract

We consider the problem of constructing optimal sparse
controllers. It is known that a property called quadratic
invariance of the constraint set is important, and results
in the constrained minimum-norm problem being sol-
uble via convex programming. We provide an explicit
method of computing H2-optimal controllers subject to
quadratically invariant sparsity constraints, along with
a computational test for quadratic invariance. As a con-
sequence, we show that block diagonal constraints are
never quadratically invariant unless the plant is block
diagonal as well.

Keywords: Decentralized control, convex optimization

1 Introduction

An important problem in control is that of constructing
decentralized control systems, where instead of a single
controller connected to a physical system, one has mul-
tiple controllers, each with access to different informa-
tion. Examples of such systems include the electricity
distribution grid, automobiles on the freeway, flocks of
aerial vehicles, paper machining, and spacecraft moving
in formation.

In a standard controls framework, the decentraliza-
tion of the system manifests itself as sparsity or delay
constraints on the controller to be designed. These con-
straints vary depending on the structure of the physical
systems, and how separate controllers can communi-
cate. In general, there is no known method of formulat-
ing the problem of finding a norm-minimizing controller
subject to such constraints as a convex optimization
problem. In many cases the problem is intractable.

It has been shown that if the constraints on the con-
troller satisfy a particular property, called quadratic in-
variance, with respect to the system being controlled,
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then the constrained minimum-norm control problem
may be reduced to a convex optimization problem.
Such quadratically invariant constraints arise in many
practical contexts. In this paper we provide a computa-
tional test for quadratic invariance when the controller
structure is defined by sparsity constraints. We further
give a procedure for computing the H2-optimal con-
troller subject to quadratically invariant sparsity con-
straints.

1.1 Prior work

The research in this area has a long history, and there
have been many striking results which illustrate the
complexity of this problem. Important early work in-
cludes that of Radner [9], who developed sufficient con-
ditions under which minimal quadratic cost for a linear
system is achieved by a linear controller. An important
example was presented in 1968 by Witsenhausen [14]
where it was shown that for quadratic stochastic op-
timal control of a linear system, subject to a decen-
tralized information constraint called non-classical in-
formation, a nonlinear controller can achieve greater
performance than any linear controller. An additional
consequence of the work of [6, 14] is to show that under
such a non-classical information pattern the cost func-
tion is no longer convex in the controller variables, a
fact which today has increasing importance.

With the difficulty of the general problem elucidated,
efforts followed to classify when linear controllers were
indeed optimal, when finding the optimal linear con-
troller could be cast as a convex optimization prob-
lem, and to understand the complexity of decentralized
control problems. In a later paper [15], Witsenhausen
summarized several important results on decentralized
control at that time, and gave sufficient conditions un-
der which the problem could be reformulated so that
the standard Linear-Quadratic-Gaussian (LQG) theory
could be applied. Under these conditions, an optimal
decentralized controller for a linear system could be
chosen to be linear. Ho and Chu [4], in the frame-
work of team theory, defined a more general class of in-
formation structures, called partially nested, for which
they showed the optimal LQG controller to be linear.
Roughly speaking, a plant-controller system is called
partially nested if whenever the information of con-
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troller A is affected by the decision of a controller B,
then A has access to all information that B has.

Certain decentralized control problems, such as the
static team problem of [9], have been proven to be in-
tractable. Blondel and Tsitsiklis [2] showed that the
problem of finding a stabilizing decentralized static out-
put feedback is NP-complete. This is also the case for a
discrete variant of Witsenhausen’s counterexample [7].

For particular information structures, the controller
optimization problem may have a tractable solution,
and in particular, it was shown by Voulgaris [12] that
the so-called one-step delay information sharing pattern
problem has this property. In [3] the LEQG problem is
solved in this framework, and in [12] the H2, H∞ and
L1 control synthesis problems are solved. A class of
structured space-time systems has also been analyzed
in [1], and shown to be reducible to a convex program.

It was shown in [10] that a property called quadratic
invariance is necessary and sufficient for the constraint
set to be preserved under feedback. This allows the con-
strained minimum-norm control problem to be reduced
to a convex optimization problem, and the tractable
structures of [1, 3, 4, 8, 12, 13, 15] can all be shown to
satisfy this property. In this paper we focus on the case
when the subspace is defined by sparsity constraints,
and provide an explicit method of computing the H2-
optimal sparse controller subject to such constraints,
along with a computational test for quadratic invari-
ance.

1.2 Preliminaries

We use the following standard notation. Denote by
Rm×np the set of matrix-valued real-rational proper
transfer matrices and let Rm×nsp be the set of real-
rational strictly proper transfer matrices. We will omit
the spatial dimensions when they are clear from con-
text.

Suppose P ∈ R(nz+ny)×(nw+nu)
p , and partition P as

P =

[
P11 P12

P21 P22

]

where P11 ∈ Rnz×nwp . For K ∈ Rnu×nyp such that
I − P22K is invertible, the linear fractional trans-
formation (LFT) of P and K is denoted f(P,K), and
is defined by

f(P,K) = P11 + P12K(I − P22K)−1P21

In the remainder of the paper, we abbreviate our no-
tation and define G = P22. This interconnection is
shown in Figure 1. We will also refer to f(P,K) as the
closed-loop map.

Given A ∈ Cm×n associate a vector vec(A) ∈ Cmn
defined by

vec(A) =
[
A11 ... Am1 A12 ... Am2 ..... A1n ... Amn

]T

P11 P12

P21 G

K

w

uy

z

Figure 1: Linear fractional interconnection of P and K

Given A ∈ Cm×n and B ∈ Cs×q let A⊗B ∈ Cms×nq
denote the Kronecker product of A and B.

Lemma 1. Let A ∈ Cm×n, B ∈ Cs×q, X ∈ Cn×s.
Then

vec(AXB) = (BT ⊗A)vec(X)

Proof. See, for example, [5].

Definition 2. We define the map h : Rp ×Rp → Rp
by

h(G,K) = −K(I −GK)−1

for all G,K such that I −GK is invertible

1.3 Problem Formulation

Suppose S ⊂ Rnu×nyp is a subspace. Given P ∈
R(nz+ny)×(nw+nu)
p , we would like to solve the following

problem
minimize ‖f(P,K)‖

subject to K stabilizes P

K ∈ S
(1)

Here ‖·‖ is any norm on Rnz×nwp , chosen to encapsulate
the control performance objectives, and S is a subspace
of admissible controllers which characterizes the decen-
tralized nature of the system. We call the subspace S
the information constraint .

Many decentralized control problems may be ex-
pressed in this form. In this paper, we focus on the
case where the norm on Rnz×nwp is the H2-norm, and
where S is defined by sparsity constraints.

This problem is made substantially more difficult in
general by the constraint that K lie in the subspace S.
Without this constraint, the problem may be solved
with many standard techniques. Note that the cost
function ‖f(P,K)‖ is in general a non-convex function
of K. No computationally tractable approach is known
for solving this problem for arbitrary P and S.

1.4 Example

Many standard centralized and decentralized control
problems may be represented in the form of prob-
lem (1), for specific choices of P and S. The following
is an example.
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Perfectly decentralized control. We would like to
design n separate controllers K1, . . . ,Kn, with con-
troller Ki connected to subsystem Gi of a coupled sys-
tem, as in Figure 2. When reformulated as a synthesis
problem in the LFT form above, the constraint set S is

S =
{
K ∈ Rnu×nyp |K = diag(K1, . . . ,Kn)

}

that is, S consists of those controllers that are block-
diagonal.

G1 G2 G3 G4 G5

K1 K2 K3 K4 K5

Figure 2: Perfectly decentralized control

We return to this example in Section 2.

1.5 Quadratic Invariance

In [10], a property called quadratic invariance was in-
troduced for general linear operators. We define this
here for the special case of transfer functions.

Definition 3. Suppose G ∈ Rny×nusp , and S ⊂ Rnu×nyp .
The set S is called quadratically invariant under G
if

KGK ∈ S for all K ∈ S

Note that, given G, we can define a quadratic map
Ψ : Rnu×nyp → Rnu×nyp by Ψ(K) = KGK. Then a
set S is quadratically invariant if and only if S is an
invariant set of Ψ; that is Ψ(S) ⊂ S.

It was shown in [10, 11] that this condition allows (1)
to be formulated as a convex optimization problem. In
this paper, we provide a computational test for this
condition when the constraint set is defined by sparsity
constraints, and then give a procedure for solving the
resulting convex optimization problem.

2 Computational Test

Many problems in decentralized control can be ex-
pressed in the form of problem (1), where S is the
set of controllers that satisfy a specified sparsity con-
straint. In this section, we provide a computational test
for quadratic invariance when the subspace S is defined
by block sparsity constraints. First we introduce some
notation.

Suppose Abin ∈ {0, 1}m×n is a binary matrix. We
define the subspace

Sparse(Abin) =
{
B ∈ Rp | Bij(jω) = 0 for all i, j

such that Abin
ij = 0 for almost all ω ∈ R

}

Also, if B ∈ Rsp, let Abin = Pattern(B) be the binary
matrix given by

Abin
ij =

{
0 if Bij(jω) = 0 for almost all ω ∈ R
1 otherwise

Note that in this section, we assume that matrices of
transfer functions are indexed by blocks, so that above,
the dimensions of Abin may be much smaller than those
of B. Then, Kbin

kl determines whether controller k may
use measurements from subsystem l, Kkl is the map
from the outputs of subsystem l to the inputs of sub-
system k, and Gij represents the map from the inputs
to subsystem j to the outputs of subsystem i.

The following results were presented for scalar spar-
sity constraints in [11]. We provide an extension to
block sparsity constraints. We first prove two prelimi-
nary lemmas.

Lemma 4. Suppose S = Sparse(Kbin), and let Gbin =
Pattern(G). If S is quadratically invariant under G,
then

Kki = 0 or Kjl = 0 for all (i, j, k, l) and K

such that Kbin
kl = 0, Gbin

ij = 1, K ∈ S

Proof. Suppose there exists (i, j, k, l) and K such
that

Kbin
kl = 0, Gbin

ij = 1, K ∈ S
but

Kki 6= 0 and Kjl 6= 0

Then we must have

Kbin
ki = 1, Kbin

jl = 1, i 6= l, j 6= k

Consider K ∈ S such that

Kab = 0 if (a, b) /∈ {(k, i), (j, l)}

Then

(KGK)kl =
∑

r

∑

s

KkrGrsKsl = KkiGijKjl

Since Gij 6= 0, we can easily choose Kki and Kjl such
that (KGK)kl 6= 0. So KGK /∈ S and S is not quadrat-
ically invariant.

Lemma 5. Suppose S = Sparse(Kbin), and let Gbin =
Pattern(G). If

Kki = 0 or Kjl = 0 for all (i, j, k, l) and K

such that Kbin
kl = 0, Gbin

ij = 1, K ∈ S

Then

Kbin
ki K

bin
jl = 0 for all (i, j, k, l)

such that Kbin
kl = 0, Gbin

ij = 1
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Proof. We show this by contradiction. Suppose there
exists (i, j, k, l) such that

Kbin
kl = 0, Gbin

ij = 1, Kbin
ki K

bin
jl 6= 0.

Then

Kbin
ki = Kbin

jl = 1

and hence it must follow that there exists K ∈ S such
that Kki 6= 0 and Kjl 6= 0.

The following is the main result of this section. It
provides a computational test for quadratic invariance
when S is defined by sparsity constraints. It also
equates quadratic invariance with a stronger condition.

Theorem 6. Suppose S = Sparse(Kbin), and let
Gbin = Pattern(G). Then the following are equivalent:

(i) S is quadratically invariant under G

(ii) KGJ ∈ S for all K,J ∈ S

(iii) Kbin
ki Gbin

ij Kbin
jl (1 − Kbin

kl ) = 0 for all i, l =
1, . . . , ny and j, k = 1, . . . , nu

Proof. We will show that (i) =⇒ (iii) =⇒
(ii) =⇒ (i). Suppose S is quadratically invariant
under G. Then by Lemma 4,

Kki = 0 or Kjl = 0 for all (i, j, k, l) and K

such that Kbin
kl = 0; Gbin

ij = 1; K ∈ S

and by Lemma 5,

Kbin
ki K

bin
jl = 0 for all (i, j, k, l)

such that Kbin
kl = 0, Gbin

ij = 1

which can be restated

Kbin
ki Gbin

ij Kbin
jl (1−Kbin

kl ) = 0

and which implies that

Kki = 0 or Jjl = 0 for all (i, j, k, l), K, J

such that Kbin
kl = 0; Gbin

ij = 1; K,J ∈ S

which clearly implies

(KGJ)kl =
∑

i

∑

j

KkiGijJjl = 0

for all (k, l),K, J such that Kbin
kl = 0;K,J ∈ S

and thus

KGJ ∈ S for all K,J ∈ S
which is a stronger condition than quadratic invariance
and hence implies (i).

This result shows us several things about sparsity
constraints. In this case quadratic invariance is equiv-
alent to another condition which is stronger in general.
When G is symmetric, for example, the subspace con-
sisting of symmetric K is quadratically invariant but
does not satisfy condition (ii). Condition (iii), which
gives us the computational test we desired, shows that
quadratic invariance can be checked in time O(n4),
where n = max{nu, ny}. It also shows that, if S is
defined by sparsity constraints, then S is quadratically
invariant underG if and only if it is quadratically invari-
ant under all systems with the same sparsity pattern.

Perfectly Decentralized Control. We now show
an interesting negative result. Let nu = ny, so that
each subsystem has its own controller as in Figure 2.

Corollary 7. Suppose there exists i, j, with i 6= j,
such that Gij 6= 0. Suppose Kbin is diagonal and
S = Sparse(Kbin). Then S is not quadratically invari-
ant under G.

Proof. Let Gbin = Pattern(G). Then

Kbin
ii Gbin

ij Kbin
jj (1−Kbin

ij ) = 1

The result then follows from Theorem 6.

It is important to note that the plant and controller
do not have to be square to apply this result because
of the block notation used in this section. This corol-
lary tells us that if each subsystem has its own con-
troller which may only use sensor information from its
own subsystem, and any subsystem affects any other,
then the system is not quadratically invariant. In other
words, perfectly decentralized control is never quadrat-
ically invariant except for the trivial case where no sub-
system affects any other.

3 Computation of Optimal Controllers

Suppose G ∈ Rny×nusp and S ⊂ Rnu×nyp is a subspace
defined by sparsity constraints. We would like to solve
problem (1). It was shown in [11] that if S is quadrat-
ically invariant under G and Knom ∈ RH∞ ∩ S is a
stabilizing controller, then K is optimal for this prob-
lem if and only if K = Knom − h

(
h(Knom, G), Q

)
and

Q is optimal for

minimize ‖T1 − T2QT3‖
subject to Q ∈ RH∞

Q ∈ S
(2)

where T1, T2, T3 ∈ RH∞ are given by

T1 = P11 + P12Knom(I −GKnom)−1P21

T2 = −P12(I −KnomG)−1

T3 = (I −GKnom)−1P21

(3)
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This result holds for any norm. We show in this
section that if we wish to minimize the H2-norm, then
we can convert (2) to an unconstrained problem which
may be readily solved.

For ease of presentation, we now make a slight change
of notation from the previous section. We no longer
assume that the plant and controller are divided into
blocks, so that Kbin

kl now determines whether the kl
index of the controller may be non-zero, rather than
determining whether controller k may use information
from subsystem l, and Gij similarly represents the ij
index of the plant. Kbin therefore has the same dimen-
sion as the controller itself. nu and ny represent the
total number of inputs and outputs, respectively.

Let

a =

nu∑

i=1

ny∑

j=1

Kbin
ij

such that a represents the number of admissible con-
trols, that is, the number of indices for which K is not
constrained to be zero.

The following theorem gives the equivalent uncon-
strained problem.

Theorem 8. Suppose x is an optimal solution to

minimize ‖b+Ax‖
subject to x ∈ RH∞

(4)

where D ∈ Rnuny×a is a matrix whose columns form
an orthonormal basis for vec(S), and

b = vec(T1), A = −(TT
3 ⊗ T2)D.

Then Q = vec−1(Dx) is optimal for (2) and the optimal
values are equivalent.

Proof. We know that

Q ∈ RHnu×ny∞ ∩ S ⇐⇒ vec(Q) = Dx

for some x ∈ RHa×1
∞

Since

‖T1 − T2QT3‖2
= ‖vec(T1 − T2QT3)‖2 by definition of the H2-norm

= ‖vec(T1)− (TT
3 ⊗ T2)vec(Q)‖2 by Lemma 1

= ‖vec(T1)− (TT
3 ⊗ T2)Dx‖2

= ‖b+Ax‖2
we have the desired result.

Therefore, we can find the optimal x for prob-
lem (4) using many available tools for unconstrained
H2-synthesis, with

P11 = b P12 = A P21 = 1 P22 = 01×a

then find the optimal Q for problem (2) as Q =
vec−1(Dx), and finally, find the optimal K for prob-
lem (1) as K = Knom − h

(
h(Knom, G), Q

)
.

4 Numerical Example

Consider an unstable lower triangular plant

G(s) =




1

s+ 1
0 0 0 0

1

s+ 1

1

s− 1
0 0 0

1

s+ 1

1

s− 1

1

s+ 1
0 0

1

s+ 1

1

s− 1

1

s+ 1

1

s+ 1
0

1

s+ 1

1

s− 1

1

s+ 1

1

s+ 1

1

s− 1




with P given by

P11 =

[
G 0
0 0

]
P12 =

[
G
I

]
P21 =

[
G I

]

and a sequence of sparsity constraints Kbin
1 , . . . ,Kbin

6

Kbin
1 =




0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 1



Kbin

2 =




0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
1 1 0 0 1




Kbin
3 =




0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
1 1 0 0 0
1 1 0 0 1



Kbin

4 =




0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
1 1 0 0 0
1 1 1 0 1




Kbin
5 =




0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
1 1 1 0 0
1 1 1 0 1



Kbin

6 =




1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1




defining a sequence of information constraints Si =
Sparse(Kbin

i ) such that each subsequent constraint is
less restrictive, and such that each is quadratically in-
variant under G. We also use S7 as the set of controllers
with no sparsity constraints; i.e., the centralized case.
A stable and stabilizing controller which lies in the sub-
space defined by any of these sparsity constraints is
given by

Knom =




0 0 0 0 0

0
−6

s+ 3
0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0
−6

s+ 3



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We can then find T1, T2, T3 as in (3), and then find
the stabilizing controller which minimizes the closed-
loop norm subject to the sparsity constraints by solving
problem (4), as outlined in Section 3. The graph in
Figure 3 shows the resulting minimum H2 norms for
the six sparsity constraints as well as for a centralized
controller.

Information Constraint

O
p
ti

m
a
l 
N

o
rm

Figure 3: Optimal norm with information constraints

5 Conclusion

We gave a computational test for quadratic invariance
when the controller is subject to sparsity constraints.
As a corollary, we noted that synthesis of block diag-
onal controllers is only quadratically invariant if the
plant is block diagonal as well. We then provided
an explicit computational method for synthesizing H2-
optimal controllers subject to quadratically invariant
sparsity constraints.
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