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Abstract

The problem of parameterizing all stabilizing con-
trollers subject to constraints is considered. A new
condition relating the plant and the constraints is in-
troduced, and it is shown that when it holds, the con-
straints are invariant under feedback.

There is no assumption of linearity or time-invariance
on either the plant or the admissible controllers, only
causality. There is also no assumption that the con-
straint set be a subspace, only that it is closed. The
results hold in continuous time or discrete time.

When the condition holds, we then obtain a param-
eterization of all stabilizing controllers subject to the
specified constraints, which is a convex parameteriza-
tion as long as the desired constraint set is convex.

1 Introduction

The problem of parameterizing all stabilizing con-
trollers subject to constraints is considered. A new
condition relating the plant and the constraints is in-
troduced, and it is shown that when it holds, the con-
straints are invariant under feedback.

A similar result was achieved for a conditioned called
quadratic invariance [7], which assumed that both the
plant and all of the controllers under consideration were
linear and time-invariant, and also assumed that the set
of admissible controllers was a subspace, as is associated
with decentralized control.

In this paper, there is no assumption of linearity or
time-invariance on either the plant or the admissible
controllers, only causality. There is also no assump-
tion that the constraint set be a subspace, only that
it is closed. Because of this, these invariance results
are no longer only applicable to decentralized control
problems, but to other types of constrained control as
well.

When the condition holds, we then obtain a param-
eterization of all stabilizing controllers subject to the

specified constraints, which is a convex parameteriza-
tion as long as the desired constraint set is convex.

1.1 Overview

In Section 2 we introduce some of the notation and
terminology that will be used throughout the paper.
In Section 3, we prove that the feedback map may be
obtained via iteration, and provide conditions under
which this is so. Section 4 provides the main result,
which introduces our new condition and then shows the
constraint set to be invariant under the feedback map.
Section 5 then uses this to parameterize all stabilizing
constrained controllers. We make some concluding re-
marks in Section 6.

2 Preliminaries

Throughout this paper, there are many statements, in-
cluding the main result, which can be made both for
continuous time and for discrete time. Rather than
state each of these twice, we use T+ to refer to both R+

and Z+, and then use Le to refer to the corresponding
extended space, as defined below.

We introduce some notation for extended spaces.
These spaces are utilized extensively in [5, 8].

We define the truncation operator PT for all T ∈ T+

on all functions f : T+ → R such that fT = PT f is
given by

fT (t) =

{

f(t) if t ≤ T

0 if t > T

We define another projection P̃t,∆ for all t,∆ ∈ R as

P̃t,∆ = Pt+∆ − Pt

Note that in discrete time, we would just have

P̃k,1x = xk+1

and we only utilize the latter notation.
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April 5, 2006 editedFor continuous time, we make use of the standard Lp

Banach spaces

Lp =

{

f : R+ → R

∣

∣

∣

∣

∫

∞

0

(f(t))
p

exists and is finite

}

equipped with the usual p-norm

‖f‖p =

(
∫

∞

0

(f(t))
p
dt

)
1

p

for any p ≥ 1, and the extended spaces

Lpe = {f : R+ → R | PT f ∈ Lp ∀ T ∈ R+}

We similarly extend the discrete time Banach spaces
`p to the extended space

`e = {f : Z+ → R | fT ∈ `∞ ∀ T ∈ Z+}

Note that in discrete time, all extended spaces contain
the same elements, since the common requirement is
that the sequence is finite at any finite index. This
motivates the abbreviated notation of `e.

We let the topology on Lpe be generated by the suf-
ficient family of semi-norms {‖·‖T | T ∈ R+} where
‖f‖T = ‖PT f‖Lp

. We let the topology on `e be gener-
ated by the sufficient family of semi-norms {‖·‖T | T ∈
Z+} where ‖f‖T = ‖PT f‖`2 . Thus convergence of a se-
quence on every possible truncation PTLe implies con-
vergence on Le.

When the dimensions are implied by context, we omit
the superscripts of Lm×n

e , Lm×n
pe , `m×n

e .

An operator H : Le → Le is said to be causal iff

PT HPT = PT H ∀ T ∈ T+

that is, if and only if future inputs can’t affect past or
present outputs.

A causal operator H : Le → Le is said to be finite
gain stable, hereafter abbreviated as f.g. stable, iff there
exists γ < ∞ such that ∀ T ∈ T+ and ∀ x ∈ Le

‖PT Hx‖ ≤ γ‖PT x‖

A causal operator H : Le → Le is said to be incremen-
tally stable, hereafter abbreviated as inc. stable, iff
there exists γ < ∞ such that ∀ T ∈ T+ and ∀ x, y ∈ Le

‖PT Hx − PT Hy‖ ≤ γ‖PT x − PT y‖

We say that K : Le → Le f.g. stabilizes G : Le → Le iff
for the interconnection in Figure 1 the maps from the
two inputs to the four other signals are all f.g. stable.

We say that G : Le → Le is strongly stabilizable iff
there exists K : Le → Le which is inc. stable and which
f.g. stabilizes G.

K

G

r y u

Figure 1: Interconnection of K and G

3 Iteration

In this section, we prove that the feedback map from r

to u in Figure 1 may be obtained via iteration, and pro-
vide conditions under which this is so. In Section 3.1
we give very broad assumptions under which all the sig-
nals of interest are guaranteed to be uniquely defined.
In Section 3.2 we introduce the iterations for both sig-
nals and operators which will be used throughout the
paper, and for which we have to prove convergence. In
Section 3.3 we introduce an additional continuity as-
sumption and prove convergence of the signals, and in
Section 3.4 we prove convergence of the operators.

This section is extremely technical. The reader wish-
ing to skip ahead should just take away that an itera-
tion R(n) is introduced which will be used in proving
the main result, and that it converges to the map from
r to u in the figure. Technical conditions are developed
which guarantee this convergence, they include all op-
erators which are strictly causal and continuous, and
they will be assumed to hold throughout the remainder
of the paper.

3.1 Existence and uniqueness

We wish to establish broad conditions under which
equations of the form r = e − He are guaranteed to
have a unique solution. For example, in Figure 1 we
may wish to know if all of the signals are uniquely de-
fined, and would then seek solutions with

H =

[

0 G

K 0

]

We now state a theorem which gives conditions under
which a unique solution is guaranteed to exist.

Theorem 1. Suppose H : L1e → L1e is causal. If for

all compact intervals I ⊆ R+, there exists γ(I) < 1 and

∆(I) > 0 such that ∀ t ∈ I and ∀ e, e′ ∈ L1e subject to

Pte = Pte
′,

‖P̃t,∆(I)(He − He′)‖ ≤ γ(I) ‖P̃t,∆(I)(e − e′)‖

then for any r ∈ L1e, the equation r = e − He has one

and only one solution.
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April 5, 2006 editedProof. See, for example, Section III.5 of [5].

We can state an analogous result for the discrete-time
case, and provide a proof in the same spirit.

Theorem 2. Suppose H : `e → `e is causal. If for all

k ∈ Z+ there exists γk < 1 such that ∀ e, e′ ∈ `e subject

to Pke = Pke′,

‖(He − He′)k+1‖ ≤ γk+1 ‖(e − e′)k+1‖

then for any r ∈ `e, the equation r = e − He has one

and only one solution.

Proof. Suppose that we have a solution for e up to
some index k ∈ Z+. We use the causality of H, and
define a function on the subsequent value as follows

ek+1 = rk+1 + (H(Pke + ek+1))k+1

= fk+1(ek+1)

Now if we are given ek+1, ẽk+1 ∈ R

‖fk+1(ek+1) − fk+1(ẽk+1)‖

=
∥

∥(H(Pke + ek+1))k+1 − (H(Pke + ẽk+1))k+1

∥

∥

≤ γ ‖ek+1 − ẽk+1‖

Thus fk+1 is a contraction on R, and so the iteration

e
(n+1)
k+1 = fk+1

(

e
(n)
k+1

)

n = 0, 1, 2, . . .

will converge to the unique solution of ek+1 for any

initial value e
(0)
k+1 ∈ R. Thus by starting at k = 0

and repeating this process for every k ∈ Z+, we can
uniquely construct the solution for e ∈ `e.

These conditions basically say that if you look over a
short enough horizon, the map needs to be contractive.
For discrete time systems, that is always achieved with
strict causality, and a small enough component which
is not strictly causal may be present as well. For finite-
dimensional linear time-invariant systems, continuous
or discrete, this would simply translate to being strictly
proper, or at least requiring the feed-through term to
have norm less than one. For more general continuous
time systems, we get the condition above.

3.2 Closed-loop iterations

Given K : Le → Le and G : Le → Le define R(n) :
Le → Le and Y (n) : Le → Le for each n ∈ Z+ as

Y (0) = I

R(n) = KY (n) ∀ n ∈ Z+

Y (n+1) = I + GR(n) ∀ n ∈ Z+

so then Y (n) may be defined recursively as

Y (0) = I

Y (n+1) = I + GKY (n) ∀ n ∈ Z+

and R(n) may be defined recursively as

R(0) = K

R(n+1) = K(I + GR(n)) ∀ n ∈ Z+

Now consider an arbitrary r ∈ Le, and define y(n) ∈
Le and u(n) ∈ Le for each n ∈ Z+ as

y(n) = Y (n)(r), u(n) = R(n)(r) ∀ n ∈ Z+

We then get the following iteration, commensurate with
the block diagram

y(0) = r

u(n) = Ky(n)

y(n+1) = r + Gu(n)

Then y(n) may be defined recursively as

y(0) = r

y(n+1) = r + GKy(n)

and u(n) may be defined recursively as

u(0) = Kr

u(n+1) = K(r + Gu(n))

3.3 Convergence of signals

We now wish to consider the convergence of iterations
such as those for y(n) above. This is more difficult than
showing the convergence of the iterations in the exis-
tence and uniqueness proofs of Theorem 1 or Theo-
rem 2, because we don’t have the luxury of allowing
complete convergence at one index or time interval be-
fore moving on to the next. In other words, we must
show that, at each time interval, the iteration still con-
verges, even though Pty 6= Pty

′ over previous intervals
but is arbitrarily close.

We need to introduce a continuity condition for this.

Suppose that for every T ∈ T+ there exists βT < ∞
such that for all x, y ∈ Le

‖PT Hx − PT Hy‖ < βT ‖PT x − PT y‖ (1)

Note that the βT may grow arbitrarily large as T grows
and so this condition in no way enforces stability on the
operator. Also note that if H is linear, then this con-
dition follows from the existence and uniqueness condi-
tions.

We now give a convergence proof for discrete time.
A proof for continuous time would follow similarly,
with the main induction over subsequent intervals ∆(I)
rather than at each index, and is therefore omitted.

3



April 5, 2006 editedTheorem 3. Suppose that H : `e → `e satisfies the

conditions of Theorem 2, as well as Condition (1), and

that we are given r ∈ `e. Then the iteration

y(n+1) = r − Hy(n)

converges to y, the unique solution to

y = r − Hy

Proof. The solution y is obviously a fixed point of
this iteration, and its truncation Pky is a fixed point
of the following iteration, which simply truncates the
input and output of the main iteration.

Define Tk : Pk`e → Pk`e as

y = Pk (r − (H(Pky)))

= Tk (Pky)

Note that this iteration differs from that of Theorem 2
in that we are iterating over all indexes up to k together,
not just one index at a time.

For k = 0, however, they are the same, and so we
know that limn→∞P0y

(n) converges to P0y on P0`e.

Now for the inductive step, we assume that
limn→∞Pky(n) converges to Pky on Pk`e.

We first prove a contractive property of Tk+1. To
ease the notation, we will hereafter drop the subscripts
and assume that T refers to Tk+1, β refers to βk+1, and
γ refers to γk+1. We also assume that signals are trun-
cated with Pk+1, so that we only need to specifically
mention truncations for earlier indices.

Note that T ny(0) = y(n), and we will use them inter-
changeably.

Choose an α such that 0 < α < 1. Given any
y(0), ỹ(0) ∈ `e such that y(0) 6= ỹ(0), we may, by the
inductive assumption, choose N such that

∥

∥

∥
Pky(n) − Pkỹ(n)

∥

∥

∥
<

α(1 − γ)

2β

∥

∥

∥
y(0) − ỹ(0)

∥

∥

∥

for all n ≥ N . Then, for any such n,

∥

∥Ty(n) − T ỹ(n)
∥

∥

≤
∥

∥H
(

y(n)
)

− H
(

ỹ(n)
)
∥

∥

=
∥

∥H
(

Pky(n) + y
(n)
k+1

)

− H
(

Pkỹ(n) + ỹ
(n)
k+1

)∥

∥

≤
∥

∥H
(

Pky(n) + y
(n)
k+1

)

− H
(

Pkỹ(n) + y
(n)
k+1

)∥

∥

+
∥

∥H
(

Pkỹ(n) + y
(n)
k+1

)

− H
(

Pkỹ(n) + ỹ
(n)
k+1

)∥

∥

≤
α

2
(1 − γ)

∥

∥y(0) − ỹ(0)
∥

∥ + γ
∥

∥y(n) − ỹ(n)
∥

∥

≤ ρmax
{

α
∥

∥y(0) − ỹ(0)
∥

∥,
∥

∥y(n) − ỹ(n)
∥

∥

}

where in the second to last step, we used the continuity
condition on the left and the contractiveness property
from the existence and uniqueness conditions on the
right, and in the last step, we let ρ = 1

2 (1− γ) + γ < 1.

Case (1): If the first quantity that we take the max-
imum over is larger, then we have shown that

∥

∥Tn+1y(0) − Tn+1ỹ(0)
∥

∥

=
∥

∥Ty(n) − T ỹ(n)
∥

∥ < α
∥

∥y(0) − ỹ(0)
∥

∥

Case (2): If, on the other hand, the second quantity is
larger, then we have shown that

∥

∥Ty(n) − T ỹ(n)
∥

∥ ≤ ρ
∥

∥y(n) − ỹ(n)
∥

∥ (2)

We can further see that, for any i ∈ Z+, as long as

α
∥

∥y(0) − ỹ(0)
∥

∥ ≤
∥

∥T iy(n) − T iỹ(n)
∥

∥ (3)

then we have
∥

∥T i+1y(n) − T i+1ỹ(n)
∥

∥ ≤ ρ
∥

∥T iy(n) − T iỹ(n)
∥

∥

Thus if (3) is satisfied for all 0 ≤ i ≤ j − 1, then
∥

∥T jy(n) − T j ỹ(n)
∥

∥ ≤ ρj
∥

∥y(n) − ỹ(n)
∥

∥ (4)

There must exist m ∈ Z+ such that

ρm ≤
α
∥

∥y(0) − ỹ(0)
∥

∥

∥

∥y(n) − ỹ(n)
∥

∥

(5)

Case (2a): If (3) fails for some 0 ≤ i ≤ m − 1, then we
have

∥

∥Tn+iy(0) − Tn+iỹ(0)
∥

∥

=
∥

∥T iy(n) − T iỹ(n)
∥

∥ < α
∥

∥y(0) − ỹ(0)
∥

∥

Case (2b): If (3) holds for all 0 ≤ i ≤ m−1, then by (4)
and (5) we have

∥

∥Tm+ny(0) − Tm+nỹ(0)
∥

∥ =
∥

∥Tmy(n) − Tmỹ(n)
∥

∥

≤ ρm
∥

∥y(n) − ỹ(n)
∥

∥ ≤ α
∥

∥y(0) − ỹ(0)
∥

∥

We have thus shown that any y(0), ỹ(0) ∈ `e, there exists
n ∈ Z+ such that

∥

∥Tny(0) − Tnỹ(0)
∥

∥ ≤ α
∥

∥y(0) − ỹ(0)
∥

∥ (6)

Note that the mapping thus satisfies a condition that
is weaker than contractive in the sense of Banach [3],
but stronger than weakly contractive in the sense of
Bailey [2].

It is clear from this condition that the fixed point
must be unique, and we can now prove convergence to
this fixed point.

Given any y(0) ∈ `e and any ε > 0, we can apply (6)
repeatedly until

∥

∥y(n) − y
∥

∥ =
∥

∥Tny(0) − Tny
∥

∥ < ε (7)

So we know that we can always get arbitrarily close to
the fixed point y, the remaining question is whether we
can stay there.
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April 5, 2006 editedWe choose Ñ large enough so that

∥

∥Pky(n) − Pky
∥

∥ <
1 − γ

2β
ε (8)

for all n ≥ Ñ , which we may do by the inductive as-
sumption. Applying (6) repeatedly, we find the first
N ≥ Ñ such that (7) holds.

We then have an N such that (7) holds for n = N ,
and (8) holds for all n ≥ N .

Now assume that (7) holds for some n ≥ N . Apply-
ing the same steps as before,

∥

∥y(n+1) − y
∥

∥ =
∥

∥Ty(n) − Ty
∥

∥

≤ ρmax
{

ε,
∥

∥y(n) − y
∥

∥

}

< ε

Thus
∥

∥y(n) − y
∥

∥ < ε for all n ≥ N , and so y(n)

converges to y.

We have now shown that Pky(n) converges to Pky for
all k ∈ Z+, and thus, y(n) converges to y in `e.

3.4 Convergence of operators

We hereafter assume that all operators satisfy the con-
ditions for existence and uniqueness in Theorem 1 or
Theorem 2 as well as the continuity condition (1).

Given K : Le → Le and G : Le → Le define Y :
Le → Le such that for any r ∈ Le

y = Y r

is the unique solution to

y = r + GKy

and define R : Le → Le such that for any r ∈ Le

u = Rr = KY r

which is then the unique solution to

u = K(r + Gu)

Theorem 4. Given K : Le → Le and G : Le → Le,

limn→∞ Y (n) = Y = (I − GK)−1 and limn→∞ R(n) =
R = K(I − GK)−1.

Proof. Consider any r ∈ Le. The equation

y = r + GKy

has a unique solution for y by Theorem 1 and Theo-
rem 2, and y = Y r. Thus (I − GK) is bijective, and
Y = (I − GK)−1 exists.

We then have

lim
n→∞

Y (n)r = lim
n→∞

y(n) = y = Y r

where the inner equality follows from Theorem 3 and
the other two follow by definition.

Thus Y (n)r converges to Y r for all r ∈ Le, and so
Y (n) converges to Y in the strong operator topology.

Then, noting that the continuity of K follows from
the technical conditions, we have

lim
n→∞

R(n) = lim
n→∞

KY (n) = K lim
n→∞

Y (n)

= KY = R = K(I − GK)−1

4 Invariance

The following is the main result of this paper. It in-
troduces a new condition, and shows that constraints
satisfying this condition are invariant under feedback.

Theorem 5. Suppose that S is closed and that

K1(I ± GK2) ∈ S ∀ K1,K2 ∈ S (9)

Then
{

K(I − GK)−1 | K ∈ S

}

= S

Proof. Suppose that K ∈ S. Then R(0) = K ∈
S. If we assume that R(n) ∈ S, then it follows from
Condition (9) that

R(n+1) = K(I + GR(n)) ∈ S

Thus R(n) ∈ S for all n ∈ Z+. We know from The-
orem 4 that limn→∞ R(n) = R, and S is closed, so
K(I − GK)−1 = R ∈ S.

Now, for any R ∈ S, we choose K = R(I + GR)−1

such that K(I − GK)−1 = R. We can then show in
the same way as for the above that K = limn→∞ K(n),
where K(0) = R ∈ S and

K(n+1) = R(I − GK(n)) ∈ S

and thus K ∈ S.

5 Parameterization

In this section we consider the parameterization of all
stabilizing controllers.

We restate the main result of [1], which gives
a parameterization of all stabilizing controllers for
a strongly stabilizable plant, with appropriate sign
changes for positive feedback.

Theorem 6. If Knom : L1e → L2e is inc. stable, Knom

f.g. stabilizes G : L2e → L1e, and

G̃ = G(I − KnomG)−1

5



April 5, 2006 editedis inc. stable, then

{

K : L1e → L2e | K f.g. stabilizes G
}

=
{

Knom + Q(I + G̃Q)−1 | Q : L1e → L2e, Q f.g. stable
}

Note that when G is inc. stable, we may choose
Knom = 0 and this reduces to the following main re-
sult of [4].

Theorem 7. If G : L2e → L1e is inc. stable, then

{K : L1e → L2e | K f.g. stabilizes G} =
{

Q(I + GQ)−1 | Q : L1e → L2e, Q f.g. stable
}

The following theorem then shows how to parameter-
ize all stabilizing controllers for a stable plant subject
to a constraint which satisfies our new condition.

Theorem 8. If G : Le → Le is inc. stable, and S

is a closed set of admissible controllers which satisfies

Condition (9), then

{K : Le → Le | K f.g. stabilizes G, K ∈ S} =
{

Q(I+GQ)−1 | Q : Le → Le, Q f.g. stable, Q ∈ S

}

Proof. Follows from Theorem 7 and Theorem 5.

5.1 Unstable Plant

We would like to use Theorem 6, along with our main
result, Theorem 5, to similarly parameterize all con-
strained stabilizing controllers for an unstable plant.

Assuming that the plant is strongly stabilizable and
that the conditions of Theorem 6 are satisfied with a
Knom ∈ S, we seek conditions under which we can make
the following statement.

{

K : Le → Le | K f.g. stabilizes G, K ∈ S
}

=
{

Knom + Q(I + G̃Q)−1 |

Q : Le → Le, Q f.g. stable, Q ∈ S
}

The assumption that S is a subspace is now introduced,
since the controller needs to remain in S when Knom is
added. We also define, for a constraint set S, a compli-
mentary set of plants S? under which our condition is
satisfied

S? = {G | K1(I ± GK2) ∈ S ∀ K1,K2 ∈ S}

We now list several conditions, any of which allow us
to make the parameterization above. They are listed
in order such that each condition follows from those
below it. Which one is the most useful, which if any
are equivalent to each other, and which follow from the
main condition (9), or what assumptions are needed for
that to be so, are important areas of future work. While
slightly more cumbersome to state, number 2 has been
the most useful thusfar [6].

1. K1(I ± G̃K2) ∈ S ∀ K1,K2 ∈ S (i.e. G̃ ∈ S?)

2. G1(I ± KnomG2) ∈ Š ∀ G1, G2 ∈ Š

for any closed Š such that G ∈ Š ⊆ S?

3. (I + KnomG1)K2 ∈ S ∀ K2 ∈ S, G1 ∈ S?

and G ∈ S?

4. K1GK2 ∈ S ∀ K1,K2 ∈ S

and K linear ∀ K ∈ S

6 Conclusions

A new condition (9) was introduced relating a plant
to constraints imposed on a controller. It was shown
in Theorem 5 that when this condition holds, the con-
straints are invariant under feedback, and the only main
assumption was the causality of the operators.

Then in Theorem 8, a parameterization was obtained
of all stabilizing constrained controllers subject to the
specified constraints, when the plant is stable and our
condition is met, and we also presented a hierarchy of
conditions which allow us to do the same for an unstable
plant.
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