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Abstract— We consider the problem of designing optimal sta-
bilizing decentralized controllers subject to arbitrary subspace
constraints. Recent work considered structural constraints,
where each part of the controller has access to some mea-
surements but not others, and developed a parametrization of
the stabilizing structured controllers such that the objective
is a convex function of the parameter, with the parameter
subject to a single quadratic equality constraint. Here we
further show that other types of controller constraints arising
in decentralized control and other areas of constrained control
can be simultaneously encapsulated in this framework with one
additional quadratic equality constraint.

I. INTRODUCTION

This paper addresses the problem of optimal decentralized

control, where we have multiple controllers, each of which

may have access to different information. Most conventional

controls analysis breaks down when such decentralization

is enforced. Finding optimal controllers when different con-

trollers can access different measurements is notoriously

difficult even for the simplest such problem [1], and there

are results proving computational intractability for the more

general case [2], [3].

When a condition called quadratic invariance holds, which

relates these information constraints on the controller to

the system being controlled, then the optimal decentralized

control problem may be recast as a convex optimization

problem [4]. For a particular Youla parametrization, which

converts the closed-loop performance objective into a convex

function of the new parameter, the information constraint

becomes an affine constraint on the parameter, and thus the

resulting problem is still convex. The problem of finding

the best block diagonal controller however, which represents

the case where each subsystem controller may only access

measurements from its own subsystem, is never quadratically

invariant except for the case where the plant is block diagonal

as well; that is, when subsystems do not affect one another.

The parametrization and optimization of stabilizing block

diagonal controllers was addressed in a similar fashion using

Youla parametrization in [5], focusing on the 2-channel (or

2-block, 2-subsystem, etc.) case. The parametrization simi-

larly converts the objective into a convex function, but the

block diagonal constraint on the controller then becomes a

quadratic equality constraint on the otherwise free parameter.

It is further suggested that the trick for achieving this can be
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implemented n− 1 times for n-channel control, resulting in

n− 1 quadratic equality constraints.

While this constraint causes the resulting problem to be

nonconvex, it still converts a generally intractable problem

into one where the only difficulty is a well-understood type

of constraint. Solving this resulting constrained problem is

then further explored in [6], and many other methods exist

for addressing quadratic equality constraints.

Recent work [7] addressed arbitrary structural constraints,

which are not generally block diagonal nor quadratically

invariant. It was first discussed how to convert this general

problem to a block diagonal synthesis problem. It was

then shown that the key insight of [5] could be adapted

to similarly convert the block diagonal synthesis problem

into a problem on a stable Youla parameter with a convex

objective, but subject to a single quadratic equality constraint,

regardless of the number of blocks.

This paper considers additional subspace constraints on

the controller, as can arise in decentralized control design,

and handles them within the same framework. We see that

delay constraints, such as those which arise when each part

of the controller must wait different amounts of time before

accessing different measurements, are seamlessly incorpo-

rated once the problem has been diagonalized, and do not

affect the form of the resulting optimization problem. We see

that constraints which require certain parts of the controller

to behave equivalently to other parts of the controller, such

as those which arise in simultaneous control or symmetric

control, result in a second quadratic equality constraint.

II. PRELIMINARIES

We suppose that we have a generalized plant P ∈ Rp

partitioned as

P =

[
P11 P12

P21 G

]

We define the closed-loop map by

f(P,K) = P11 + P12K(I −GK)−1P21

The map f(P,K) is also called the (lower) linear fractional

transformation (LFT) of P and K. Note that we abbreviate

G = P22, since we will refer to that block frequently, and

so that we may refer to its subdivisions without ambiguity.

This interconnection is shown (along with disturbances) in

Figure 1.
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We suppose that there are ny sensor measurements and

nu control actions, and thus partition the sensor measure-

ments and control actions as

y =
[
yT1 . . . yTny

]T
u =

[
uT
1 . . . uT

nu

]T

with partition sizes

yi ∈ L
pi

2 ∀ i ∈ 1, . . . , ny uj ∈ L
mj

2 ∀ j ∈ 1, . . . , nu

and total sizes

y ∈ L
p
2,

ny∑

i=1

pi = p; u ∈ Lm
2 ,

nu∑

j=1

mj = m

and then further partition G and K as

G =





G11 . . . G1nu

...
...

Gny1 . . . Gnynu



 K =





K11 . . . K1ny

...
...

Knu1 . . . Knuny





with block sizes

Gij ∈ Rpi×mj
sp , Kji ∈ Rmj×pi

p ∀ i, j

and total sizes

G ∈ Rp×m
sp K ∈ Rm×p

p

This will typically represent n subsystems, each with its own

controller, in which case we will have n = ny = nu, but this

does not have to be the case.

We denote by Rm×n
p the set of matrix-valued real-

rational proper transfer matrices, by Rm×n
sp the set of matrix-

valued real-rational strictly proper transfer matrices, and

by RHm×n
∞ the set of real-rational proper stable transfer

matrices, omitting the superscripts when the dimensions are

implied by context.

Let In represent the n× n identity.

A. Stabilization

P11 P12

P21 G

K

w

uy

z

v1 v2

Fig. 1. Linear fractional interconnection of P and K

We say that K stabilizes P if in Figure 1 the nine

transfer matrices from w, v1, v2 to z, u, y belong to RH∞.

We say that K stabilizes G if in the figure the four transfer

matrices from v1, v2 to u, y belong to RH∞. P is called

stabilizable if there exists K ∈ Rm×p
p such that K stabilizes

P . The following standard result relates stabilization of P

with stabilization of G.

Theorem 1: Suppose G ∈ Rp×m
sp and P ∈

R
(nz+p)×(nw+m)
p , and suppose P is stabilizable. Then

K stabilizes P if and only if K stabilizes G.

Proof: See, for example, Chapter 4 of [8].

For a given system P , all controllers that stabilize the

system may be parameterized using the well-known Youla

parametrization [9], stated below.

Theorem 2: Suppose that we have a doubly

coprime factorization of G over RH∞, that is,

Ml, Nl, Xl, Yl,Mr, Nr, Xr, Yr ∈ RH∞ such that

G = NrM
−1
r = M−1

l Nl and
[
Xl −Yl

−Nl Ml

] [
Mr Yr

Nr Xr

]

=

[
Im 0
0 Ip

]

. (1)

Then the set of all stabilizing controllers is given by

{K ∈ Rp | K stabilizes G}

=
{

(Yr −MrQ)(Xr −NrQ)−1
∣
∣

Xr −NrQ is invertible, Q ∈ RH∞

}

=
{

(Xl −QNl)
−1(Yl −QMl)

∣
∣

Xl −QNl is invertible, Q ∈ RH∞

}

.

Furthermore, the set of all closed-loop maps achievable with

stabilizing controllers is

{

f(P,K)
∣
∣ K ∈ Rp, K stabilizes P

}

=
{

T1−T2QT3

∣
∣ Xr−NrQ is invertible, Q ∈ RH∞

}

,

(2)

where T1, T2, T3 ∈ RH∞ are given by

T1 = P11 + P12YrMlP21

T2 = P12Mr

T3 = MlP21.

(3)

Proof: See, for example, Chapter 4 of [8].

The parameter Q is usually referred to as the Youla param-

eter. The following lemma shows that the two parametriza-

tions above give the same change of variables. The proof

may be found in [7], in which it follows similarly from [5].

Lemma 3: Suppose G ∈ Rsp. Then the set of all stabiliz-

ing controllers is given by

{K ∈ Rp | K stabilizes P} =
{

(Yr −MrQ)(Xr −NrQ)−1 = (Xl −QNl)
−1(Yl −QMl)

∣
∣ Q ∈ RH∞

}

.

Remark 4: Even if G is not strictly proper, the invertibility

conditions still hold for almost all parameters Q [10, p.111].

III. PROBLEM FORMULATION

We develop the optimization problem that we need to

solve for optimal synthesis subject to three types of subspace

constraint.

A. Structural Constraints

Structural constraints, which specify that each controller

may access certain sensor measurements but not others, man-

ifest themselves as sparsity constraints on the controller to be
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designed. We here introduce some notation for representing

this type of constraint.

Let B = {0, 1} represent the set of binary numbers.

Suppose Abin ∈ B
m×n is a binary matrix. We define the

subspace

Sparse(Abin) =
{

B ∈ Rp | Bij(jω) = 0 for all i, j

such that Abin
ij = 0 for almost all ω ∈ R

}

giving all of the proper transfer function matrices which

satisfy the given sparsity constraint.

We then represent the constraints on the overall controller

with a binary matrix Kbin ∈ B
nu×ny where

Kbin
kl =







1, if control input k

may access sensor measurement l

0, if not.

The subspace of controllers satisfying the structural con-

straint is then given as

St = Sparse(Kbin).

B. Composition Constraints

For an active part of the controller, that is, for k, l such that

Kbin
kl = 1, a composition constraint imposes that it must take

the form Kkl = ṼklK̂klŨkl for some given operators Ṽkl and

Ũkl, where K̂kl is then left to be designed. The motivating

example for this type of constraint is the case where there

is a transmission delay before the kth controller can access

the lth sensor measurement yl, and then Ũkl would be the

necessary delay, but we can handle it much more generally.

C. Scaling Constraints

We lastly consider constraints which impose that one

part of the controller must be a multiple of another. The

motivating examples come from the special case requiring

various parts of the controller to be equivalent. These include

simultaneous control, where the controller must be block

diagonal, and then each block must be equivalent, as well

as symmetric control, where each part of the controller must

be equivalent to its transposed counterpart, except for the

diagonal blocks, which have no such constraint.

These constraints generally take the form

K lmult
kl Kkl = KijK

rmult
ij (4)

for some K lmult ∈ R
mi×mk and K rmult ∈ R

pj×pl . For most

applications of interest, both multipliers will be the identity,

and note that this is only possible when we have mi = mk

and pj = pl. When no such constraint needs to be enforced

for given i, j, k, l, we assign K lmult
kl = 0 and K rmult

ij = 0.

We define Sc as the set of all controllers satisfying these

scaling constraints.

We can now set up our main problem of finding the best

controller subject to all of these subspace constraints.

D. Problem Setup

Given a generalized plant P and a subspace of admissible

controllers S, we would then like to solve the following

problem:

minimize ‖f(P,K)‖

subject to K stabilizes P

K ∈ S

(5)

Here ‖·‖ is any norm on the closed-loop map chosen to en-

capsulate the control performance objectives. The subspace

of admissible controllers, S, is defined to encapsulate the

constraints outlined above on which controllers can access

which sensor measurements, on the pre- and post-processing

of signals into and out of each part of the controller, and on

which parts of the controller must be multiples of others.

This problem is made substantially more difficult in gen-

eral by the constraint that K lie in the subspace S. Without

this constraint, the problem may be solved with many stan-

dard techniques. Note that the cost function ‖f(P,K)‖ is

in general a non-convex function of K. If the information

constraint is quadratically invariant [4] with respect to the

plant, then the problem may be recast as a convex optimiza-

tion problem, but no computationally tractable approach is

known for solving this problem for arbitrary P and S.

IV. DIAGONALIZATION

In this section, we discuss how the problem of finding the

optimal structured controller K ∈ St can be converted to a

problem of finding an optimal block diagonal controller.

The concepts in this section are fairly straightforward,

but covering the general case rigorously is unfortunately

of a tedious nature requiring multiple subscripts. We will

summarize the transformation here and provide an example,

and details can be found in Section IV of [7].

Given the structural constraints, we let a be the total num-

ber of active blocks (for which Kbin
kl = 1), and then for each

of these active blocks, we assign a unique α ∈ {1, . . . , a},

and let κα = k capture the control input associated with that

active block and let λα = l capture the sensor measurement

associated with that active block.

We are then able to define a left-invertible matrix of 1’s

and 0’s U ∈ R
ay×p that repeats sensor measurements as

necessary such that ỹ = Uy gives the measurements for

the block-diagonal controller, and to define a right-invertible

matrix of 1’s and 0’s V ∈ R
m×au that reconstitutes the

output from the diagonal controller as the controller inputs

to the plant as u = V ũ.

We can then define a new generalized plant P̃ ∈

R
(nz+ay)×(nw+au)
p with the following components

P̃11 = P11 P̃12 = P12V

P̃21 = UP21 G̃ = UGV
(6)

which maps (w, ũ) → (z, ỹ).
Example 5: Suppose we are trying to find the best con-

troller K ∈ St where St = Sparse(Kbin) and where the
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admissible controller structure is given by

Kbin =





1 0 1 0
0 1 0 0
1 0 0 1





that is, we need to find the best 3× 4 controller where only

5 particular parts of the controller may be active.

We then have a = 5, and assign (κ1, λ1) = (1, 1),
(κ2, λ2) = (3, 1), (κ3, λ3) = (2, 2), (κ4, λ4) = (1, 3), and

(κ5, λ5) = (3, 4). We then get

U =









I 0 0 0
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I









V =





I 0 0 I 0
0 0 I 0 0
0 I 0 0 I





such that ỹ = Uy =
[
yT1 yT1 yT2 yT3 yT4

]T
and such

that u = V ũ =
[
(ũ1 + ũ4)

T ũT
3 (ũ2 + ũ5)

T
]T

. The

matrix U repeats the first sensor measurement since the first

two active parts of the controller, and thus the first two parts

of the block diagonal controller, both need to access it, and

then the matrix V takes the 5 signals from the block diagonal

controller (ũ) and reconstitutes the 3 controller inputs (u).

We may then replace the given generalized plant P with P̃

as in (6), and any admissible controller K ∈ St by the

block diagonal controller K̃ = diag(Kκ1λ1
, . . . ,Kκ5λ5

) =
diag(K11,K31,K22,K13,K34) such that K = V K̃U , and

this maintains the same closed-loop map.

Having defined these transformations, we then need to

show that they indeed yield a diagonal synthesis problem

which is equivalent to our original problem.

We first give a lemma which verifies that we have properly

set up our bijection from admissible structured controllers

K ∈ St to block diagonal controllers K̃ ∈ S̃d. The proof

may be found in [7].

Lemma 6: Given K̃ ∈ S̃d, we can let K = V K̃U , and

then K ∈ St.

Given K ∈ St, we can let

K̃αβ =

{

Kkl, if α = β, k = κα, l = λα

0, otherwise,
(7)

and then K̃ ∈ S̃d and K = V K̃U .

Remark 7: Note that given K ∈ St, V
†KU † is generally

not in S̃d.

We now define the subspace of controllers in the new space

which satisfy the scaling constraints in the original space as

K̃ ∈ S̃c iff

K lmult
καλα

K̃αα = K̃ββK
rmult
κβλβ

∀ α, β ∈ 1, . . . , a (8)

and show that, given a controller satisfying the structural

constraints, this is indeed equivalent to the original scaling

constraints.

Lemma 8: Given the same transformation between K and

K̃ stated in Lemma 6,

K ∈ St ∩ Sc ⇔ K̃ ∈ S̃d ∩ S̃c.

Proof: We have K ∈ St ⇔ K̃ ∈ S̃d from Lemma 6,

and then the equivalence of K ∈ Sc and K̃ ∈ S̃c given that

K̃ ∈ S̃d is follows directly from (4),(7), (8).

If K = V K̃U , then

f(P,K) = P11 + P12(V K̃U)(I −GV K̃U)−1P21

= P11 + (P12V )K̃(I − UGV K̃)−1UP21

= P̃11 + P̃12K̃(I − G̃K̃)−1P̃21

= f(P̃ , K̃)

where we used the push-through identity in the second step,

and thus the closed-loop maps are identical.

With repeated use of the push-through identity we also

find
[
I K

G I

]−1

=

[
V 0
0 U †

] [
I K̃

G̃ I

]−1 [
V † 0
0 U

]

Thus if K̃ stabilizes G̃, then K stabilizes G. The converse

does not generally follow from this relation, but if an unstable

mode is suppressed by V,U †, V †, or U , we just need a

stabilizing K̃ which yields V K̃(I − G̃K̃)−1U = K(I −
GK)−1 to achieve the same closed-loop map. Generalizing

the technical conditions needed for this, or understanding in

what manner enforcing internal stability on the diagonalized

problem represents a stronger notion of stability enforced on

the orignal problem, is ongoing work.

We lastly define S̃ = S̃d ∩ S̃c as the set of admissible

controllers after the transformation developed in this section;

that is, the set of controllers which are block diagonal,

corresponding to the structural constraint, and which also

satisfy the scaling constraints.

V. PARAMETRIZATION

In this section, we assume that our problem has been

converted to one of finding an optimal block diagonal

controller, and address the problem of parametrizing all of

the stabilizing controllers and all of the achievable closed-

loop maps, to further transform the optimization problem to

one over a stable parameter with a convex objective. We

show that this can be achieved, with the diagonalization

manifesting itself as a quadratic equality constraint on the

parameter, and the scaling constraints manifesting themselves

as a second quadratic equality constraint on the paramter.

A. Composition Constraints

Since the problem has been diagonalized, the constraints

of the type described in Section III-B can be easily han-

dled by moving the given operators over to the plant. The

matrix U (and thus P̃21 and G̃) are left-multiplied by

diag(Ũκ1λ1
, . . . , Ũκaλa

), and the matrix V (and thus P̃12

and G̃) are right-multiplied by diag(Ṽκ1λ1
, . . . , Ṽκaλa

). This

preserves the closed-loop map for any designed controller,

though it should be noted that stabilizability can be affected

if more general operators than the motivating ones are used

in the compositions. This transformation leaves us with a

controller to design which must be block diagonal and which
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must satisfy the scaling constraints, so we now turn our

attention to those constraints, and we do not discuss the

composition constraints any further, as they are embedded

in the plant.

B. Equivalent Diagonal Constraint

The key insight in this section, that a block diagonal

constraint can be expressed as in (9), which then becomes a

quadratic constraint in the Youla parameter, is largely derived

from Manousiouthakis [5]. There this idea was introduced

for 2-channel control (block diagonal with 2 blocks), and it

was suggested that the same technique could be used n− 1
times, resulting in n − 1 quadratic equality constraints on

the Youla parameter, to enforce a block diagonal constraint

with n blocks. Here, in addition to having first started with

an arbitrary structural constraint, we now show how this

parametrization can be achieved with just one quadratic

equality constraint, regardless of the number of blocks, as

was developed in [7].

Define Ll ∈ R
au×au as

Ll = diag(Ib1 , 2Ib2 , . . . , aIba)

and define Lr ∈ R
ay×ay as

Lr = diag(Ic1 , 2Ic2 , . . . , aIca)

and note that the two matrices are identical if all controller

blocks are square or scalar.

We now show how these matrices can be used to enforce

a block diagonal constraint.

Lemma 9: Given K̃ ∈ R
au×ay
p ,

LlK̃ = K̃Lr ⇔ K̃ ∈ S̃d. (9)

Proof:

LlK̃ = K̃Lr

⇔

a∑

k=1

(Ll)ikK̃kj =

a∑

k=1

K̃ik(Lr)kj ∀ i, j

⇔ (Ll)iiK̃ij = K̃ij(Lr)jj ∀ i, j since Ll, Lr diag.

⇔ iK̃ij = jK̃ij ∀ i, j

⇔ K̃ij = 0 ∀ i 6= j

⇔ K̃ ∈ S̃d.

C. Equivalent Scaling Constraint

We now define matrices that will allow us to similarly

recharacterize the scaling constraints.

Define Al ∈ R
au×au as

(Al)ij =

{

Ibi , if i = j

K lmult
κjλj

, otherwise.

and define Ar ∈ R
ay×ay as

(Ar)ij =

{

Ici , if i = j

K rmult
κiλi

, otherwise.

We now show how these matrices can be used to enforce

a scaling constraint.

Lemma 10: Given K̃ ∈ R
au×ay
p ,

LlK̃ = K̃Lr, AlK̃ = K̃Ar ⇔ K̃ ∈ S̃ (10)

Proof: We know from Lemma 9 that the first equality

gives us K̃ ∈ S̃d. Then,

AlK̃ = K̃Ar

⇔

a∑

k=1

(Al)ikK̃kj =

a∑

k=1

K̃ik(Ar)kj ∀ i, j

⇔ (Al)ijK̃jj = K̃ii(Ar)ij ∀ i, j since K̃ diag.

⇔ K lmult
κjλj

K̃jj = K̃iiK
rmult
κiλi

∀ i, j

⇔ K̃ ∈ S̃c.

Example 11: Suppose that we wish to achieve simultane-

ous control of 4 (square) subsystems. We then have

Ll = Lr =







I 0 0 0
0 2I 0 0
0 0 3I 0
0 0 0 4I







so that LlK̃ = K̃Lr forces K̃ to be block diagonal, and then

Al = Ar =







I 0 0 0
I I 0 0
0 I I 0
0 0 I I







so that AlK̃ = K̃Ar forces K̃11 = K̃22 = K̃33 = K̃44.

D. Main Result

The following theorem is the main result of this paper. It

shows that all of the stabilizing block diagonal controllers

subject to the scaling constraints can be parametrized by a

stable Youla parameter, subject to two quadratic equality con-

straints. It further shows that the set of all achievable closed-

loop maps may then be expressed an an affine function of

this Youla parameter, subject to the same quadratic equality

constraints.

Theorem 12: Suppose that P̃ is stabilizable, and that we

have a doubly coprime factorization of G̃ as in (1). Then

{K̃ ∈ Rp | K̃ stabilizes P̃ , K̃ ∈ S̃} =

{(Yr −MrQ)(Xr −NrQ)−1 | Q ∈ RH∞,

qd(Q) =0, qs(Q) = 0}

where

qd(Q) =
[
Iau

Q
]
[
W1 W2

W3 W4

] [
Iay

Q

]

(11)

and

qc(Q) =
[
Iau

Q
]
[
W5 W6

W7 W8

] [
Iay

Q

]

(12)
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and where

[
W1 W2

W3 W4

]

=

[
Xl Yl

−Nl −Ml

] [
Ll 0
0 Lr

] [
Yr −Mr

−Xr Nr

]

.

(13)

and

[
W5 W6

W7 W8

]

=

[
Xl Yl

−Nl −Ml

] [
Al 0
0 Ar

] [
Yr −Mr

−Xr Nr

]

.

(14)

Further,

{f(P̃ , K̃) | K̃ stabilizes P̃ , K̃ ∈ S̃} =

{T1 − T2QT3 | Q ∈ RH∞, qd(Q) = 0, qs(Q) = 0} (15)

where Ti are given as in (3).

Proof: With this change of variables, the equivalence

of Q ∈ RH∞ with K̃ stabilizing P̃ , as well as f(P̃ , K̃) =
T1−T2QT3, follow from Theorem 2. It just remains to show

that the diagonal and scaling constraints on the controller

are equivalent to the quadratic constraints on the Youla

parameter. Note that we utilize Lemma 10 in the first step,

and that we utilize Lemma 3 and the equivalence of the left

and right parametrizations in the second step:

K̃ ∈ S̃, K̃ ∈ Sc

⇔ LlK̃ = K̃Lr, AlK̃ = K̃Ar

⇔ Ll(Yr −MrQ)(Xr −NrQ)−1

= (Xl −QNl)
−1(Yl −QMl)Lr,

Al(Yr −MrQ)(Xr −NrQ)−1

= (Xl −QNl)
−1(Yl −QMl)Ar

⇔ (Xl −QNl)Ll(Yr −MrQ)

= (Yl −QMl)Lr(Xr −NrQ),

(Xl −QNl)Al(Yr −MrQ)

= (Yl −QMl)Ar(Xr −NrQ)

⇔ (XlLlYr − YlLrXr)
︸ ︷︷ ︸

W1

+(YlLrNr −XlLlMr)
︸ ︷︷ ︸

W2

Q

+Q (MlLrXr −NlLlYr)
︸ ︷︷ ︸

W3

+Q (NlLlMr −MlLrNr)
︸ ︷︷ ︸

W4

Q = 0,

(XlAlYr − YlArXr)
︸ ︷︷ ︸

W5

+(YlArNr −XlAlMr)
︸ ︷︷ ︸

W6

Q

+Q (MlArXr −NlAlYr)
︸ ︷︷ ︸

W7

+Q (NlAlMr −MlArNr)
︸ ︷︷ ︸

W8

Q = 0

⇔ qd(Q) = 0, qs(Q) = 0

We may thus solve the following equivalent problem

minimize ‖T1 − T2QT3‖

subject to Q ∈ RH∞

qd(Q) = 0

qs(Q) = 0

(16)

to find the optimal Q∗, recover the optimal diagonal con-

troller as K̃∗ = (Yr − MrQ
∗)(Xr − NrQ

∗)−1, and then

recover the structured controller for our original problem (5)

as K∗ = V K̃∗U .

Remark 13: Note that the calculation of the Youla param-

eters (1) and the closed-loop parameters (3) in Theorem 12

must be based on G̃ and P̃ .

VI. CONCLUSIONS

We have considered the problem of synthesizing optimal

stabilizing controllers subject to decentralization constraints.

We first showed how to recast this as a block diagonal

synthesis problem, and then how to recast that as a problem

over a stable Youla parameter with a convex objective.

The general problem we are addressing is known to be

intractable, and so it is not surprising that the resulting opti-

mization problem is not convex in general. However, we have

taken a broad class of important intractable problems, shown

how to handle them in a unified manner, and shown how the

inherent difficulty of the problem can be concentrated into

two quadratic equality constraints.

The synthesis of optimal (decentralized) control via Youla

parametrization can now be summarized as follows. Without

decentralization constraints, finding the optimal stabilizing

controller can be cast as optimizing a convex function of the

Youla parameter, where the parameter is free and stable. If

the controller is instead subject to a quadratically invariant

constraint, the parameter is subject to an affine equality

constraint. If the controller is subject to a structural constraint

which is not quadratically invariant, the parameter is subject

to a quadratic equality constraint. If the controller is subject

to additional subspace constraints, the parameter is subject

to a second quadratic equality constraint.
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