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Abstract— This paper discusses the controllability of linear
time-invariant (LTI) systems with decentralized controllers.
Whether an LTI system is controllable (by LTI controllers) with
respect to a given information structure can be determined by
testing for fixed modes, but this gives a binary answer with no
information about robustness. Measures have been developed
to further determine how far a system is from having a fixed
mode, in particular the decentralized assignability measure of
Vaz and Davison in 1988, but these measures cannot actually
be computed in most cases. We thus seek an easily computable,
non-binary measure of controllability for LTI systems with
decentralized controllers of arbitrary information structure.

In this paper, we address this problem by utilizing modern
optimization techniques to tackle the decentralized assignability
measure. The main difficulties which have previously precluded
its widespread use, are that it involves the minimization of
the n-th singular value of a matrix, which must further be
minimized over a power set of the subsystems. We will propose
three methods to address its computation. First, we will discuss
a relaxed convex problem, using the nuclear norm in place of
the singular value, and expressing the power set minimization
as binary constraints which can be relaxed to the hypercube.
Our second algorithm simply entails rounding when the first
method fails to reach a corner of the hypercube. Our final
algorithm is developed using the Alternating Direction Method
of Multipliers (ADMM), and is shown to decouple the effects of
the binary variables, such that they can be optimized directly
with per-iteration computations scaling linearly, rather than
exponentially, with the number of subsystems. This final method
is shown to produce results which closely track the assignability
measure across a variety of fixed mode types.

I. INTRODUCTION

A seminal result in decentralized control is the develop-
ment of fixed modes by [1] - that plant modes which cannot
be moved with a static decentralized controller cannot be
moved by a dynamic one either, and that the other modes
which can be moved can be shifted to any chosen locations
with arbitrary precision.

In many cases one needs to know more than just whether
or not a fixed mode is present. It could be the case that
although the plant is theoretically controllable (i.e., there
exist no fixed modes), that a large control effort is required
to move the states, and/or that a small perturbation to the
plant would result in a fixed mode. These questions have
been well answered for the centralized case through con-
trollability, observability, and Hankel operators. In particular,
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Hankel singular values of a stable plant provide a non-binary
measure of how controllable and observable that plant is, and
are easy to compute.

In the decentralized case, Vaz & Davison have defined
the decentralized assignability measure based on the distance
of the plant from the set of plants that have a fixed mode
[2]. They characterized and connected the mobility of an
eigenvalue of the plant, which is the change in its location
when a decentralized controller of bounded magnitude is
applied, to the aforementioned measure. They have also
proven that this measure would be non-zero if and only if
there exist no fixed modes. However, this metric is hard to
compute for all but the smallest problems. As an alternative
approach, [3] have explored the use of the Hankel operator
to develop an easily computable metric which could provide
information regarding proximity to a fixed mode for decen-
tralized control, which would work on some but not all the
considered cases.

The developed metric by Vaz & Davison in [2] corre-
sponds to the minimization of the n-th singular value over
a power set, and hence, would be intractable in general. In
this paper, we seek to address the aforementioned measure
by providing tractable approximations.

To this end, we will first replace the optimization problem
in Vaz & Davison which involves minimizing over a matrix
with variable dimension, by a form that would only contain
a fixed-size matrix. We then propose three methods for
computation of the relaxed version. Currently, in all of these
three methods, we use the nuclear norm as a proxy for rank
minimization, rather than directly minimizing over the n-th
singular value. Our first method would result in a convex
program that involves a relaxed real vector instead of the
ideal binary one. Secondly, we would take the solution
of the first method, and round the relaxed real vector to
its closest binary value, and derive a subsequent convex
optimization problem. Lastly, we will use the Alternating
Direction Method of Multipliers (ADMM) [4] to propose an
iterative algorithm that would directly achieve the desired
binary value in all the iterations.

The organization of the paper is as follows. We state some
preliminary notations and definitions in Section II, and re-
view the fixed modes, the decentralized assignability measure
of [2], and the diagonalization method in Section III. We will
then form the relaxed version of the optimization problem
of the interest, and state its characteristics in Section IV. We
will propose three methods pertaining to the relaxed problem
in Section V. We will use numerical examples to illustrate,
investigate, and compare the performance of the proposed
methods in Section VI.
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II. PRELIMINARIES

We assume that we have a causal, linear time-invariant,
and strictly proper plant G, with nu inputs and ny outputs.
A state-space representation for G is given by (A,B,C, 0).
We next introduce some notation that will help encapsulate
the main type of decentralization we consider below.

We are not only interested in the input-output character-
istics of the plant G, but also in imposing structure on the
feedback controller. We will denote the feedback controller
by K, such that we have u(s) = K(s)y(s), and suppose
that the controller is finite dimensional, causal, linear time-
invariant, and proper. We are interested in confining the space
of admissible controllers by imposing an information con-
straint on K. We will primarily focus on sparsity constraints,
and denote the set of controllers that satisfy the sparsity
constraint by S.

We can associate the set of controllers that satisfy
some sparsity constraint (i.e., are in S) to a binary ma-
trix Kbin ∈ Bnu×ny , with B = {0, 1}, whose (i, j) entry is
equal to 1 (Kbin

ij = 1), if the i-th control input may access
the j-th measurement output, and 0 otherwise. We define
a ,

∑
i,j K

bin
ij . We also denote the diagonal information

structures by Sd, for which only the diagonal elements of
the controller are allowed to be non-zero, and thus we have
Kbin
ij = 1 iff i = j and 0 otherwise. Also, for a given

i ∈ {1, · · · , nu}, define Ji , {j ∈ {1, · · · , ny} |Kbin
ij = 1},

which are the set of sensor measurements that control action
ui is allowed to access. For a subset I ⊆ {1, · · · , nu}, denote
its complement by Ī , {1, · · · , nu} − I. Similarly define
JI ,

⋃
i∈I Ji. Let Bi and Cj be the i-th column of B

and j-th row of C, and for any subset I = {i1, · · · , i|I|},
define BI ,

[
Bi1 · · ·Bi|I|

]
. Likewise, for any subset

J = {j1, · · · , j|J|}, define CJ ,
[
CTj1 · · · CTj|J|

]T
. It

is noteworthy to mention that for a diagonal information
structure Sd, we have that JĪ = Ī.

III. REVIEW

In this section, we will first review the notion of fixed
modes in Section III-A. We then review the decentralized
assignability measure in Section III-B, which is the metric
that we would like to approximate in this paper. Lastly, we
will review a method called diagonalization in Section III-C.

A. Fixed Modes

We will briefly review the notion of fixed modes in this
section. Materials in this section are from [5], [6] which are
both largely derived from [1].

Definition 1: The set of fixed-modes of a plant G with
respect to a sparsity pattern S and a type T , is defined as:

Λ (G,S, T ) ,
{λ ∈ C | λ ∈ eig (ACL(G,K)) , ∀ K ∈ S ∩ T }
=

⋂
K∈S∩T

ACL(G,K),

where ACL(G,K) gives the resulting closed-loop A matrix
when controller K is closed around plant G.

Here the type T could refer to the set of static controllers
which only have a non-zero feedthrough term (T s), or the
set of finite dimensional LTI dynamic controllers (T d).

Remark 2: This reduces to the well-known definition of
fixed modes in [1] if S is block-diagonal, and T = T s,
An algebraic test to check for the existence of a fixed
mode (similar to the PBH rank test for controllability or
observability) was given in [7, Theorem 4.1]. The generalized
version of this test is given as follows:

Theorem 3 ( [8, Theorem 2]): Given a strictly proper
plant G, and an information structure S , we have that λ ∈ C
is a fixed-mode of G, i.e., λ ∈ Λ (G,S, T s), if and only if
there exists a subset I ⊆ {1, · · · , nu} such that:

rank

[
A− λI BI

CJĪ 0

]
< n, (1)

where n is the dimension of the state, i.e., A ∈ Rn×n.

B. Decentralized Assignability Measure

We will first state an existing metric on how far a system
is from having decentralized fixed modes, and then review
some of its properties. The materials in this section are
from [2], and are adopted to the notation used in this paper.

We first define the set of plants that have the same
dimension as G, and have a fixed mode with respect to S.

Definition 4: Given the dimension of state space matrices
by dim(G), and an information structure S , define the set of
unassignable systems as:

UNA (dim (G) ,S) ,

{G̃ | G̃ =
(
Ã, B̃, C̃, 0

)
, where Ã ∈ Rn×n, B̃ ∈ Rn×nu ,

C̃ ∈ Rny×n, such that Λ
(
G̃,S, T s

)
6= ∅}, (2)

where dependence on G is implicitly through the dimension
of its state-space matrices, and dependence on S comes from
all G̃ having a fixed mode with respect to S.

We are interested in the minimum distance between G, and
the set of plants that have fixed-mode(s) with respect to the
information structure S , i.e., we interested in the distance of
G from UNA (dim (G) ,S). To this end, define the following
notion of distance:

d (G,UNA (dim (G) ,S)) ,

inf
G̃∈UNA(dim(G),S)

∥∥∥∥[A− Ã B − B̃
C − C̃ 0

]∥∥∥∥
2

,
(3)

where (Ã, B̃, C̃, 0) is a state-space representation for G̃.
Vaz & Davison [2] have defined the decentralized

assignability measure as the above distance, and have shown
that it can equivalently be written as an another optimization
problem:

Theorem 5 ( [2, Theorem 3]): Given an LTI plant G, and
an information structure S, the decentralized assignability
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measure is given by:

σVD (G,S) , d (G,UNA (dim (G) ,S))

= min
λ∈C,

I⊆{1,··· ,nu}

σn

([
A− λI BI

CJĪ 0

])
, (4)

where I can be any non-empty proper subset, and JĪ depends
on S and I as stated earlier.

Remark 6: This metric is zero if and only if (1) is satis-
fied, which in turn is a necessary and sufficient condition for
having a fixed mode.

Remark 7: This metric possesses interesting properties,
but it is hard to compute due to two reasons. Firstly,
minimizing over the n-th singular value is non-convex, and
secondly, minimizing over the partitions I ⊆ {1, · · · , nu}
would involve integer programming (2nu − 2 cases). This is
our main motivation to approximate (4) by easily computable
methods.

C. Diagonalization

We will briefly review a technique called diagonalization.
This technique could be used to transform the non-diagonal
information structures (S 6= Sd) into a diagonal one by
arranging and repeating the columns of B (and rows of C)
in a certain manner.

Theorem 8: Given a plant G, and an arbitrary information
structure S, let Gd be the diagonalized plant given as:

Ad = A, Bd =
[
(Bd)1 · · · (Bd)nu

]
Cd =

[
(Cd)T1 · · · (Cd)Tnu

]T
, Dd = 0,

(5)

where Bd ∈ Rn×a, (Bd)i ∈ Rn×|Ji|, and (Bd)i =
[Bi · · ·Bi]. Also, Cd ∈ Ra×n, and (Cd)i =[
· · · CTj · · ·

]T
, for all j ∈ Ji. Then, we have that:

Λ (G,S, T s) = Λ (Gd,Sd, T s) . (6)
Proof: The proof would closely follow the one of the

[8, Theorem 1].
Here, dependence on S is implicitly through formation of
Ji. Whenever this techniques is used through this paper, we
will make it clear by subscripting the state space matrices
by (·)d.

Remark 9: Given a plant G, and a diagonal information
structure Sd, we have that Gd = G.

IV. RELAXATIONS OF THE DECENTRALIZED
ASSIGNABILITY MEASURE

We are going to form the approximated version of the
Vaz & Davison metric in this section. First, we will address
a relaxation for the integer programming involved in (1),
and study the rank constraint between the original problem
and the relaxed one. Next, we will apply the aforementioned
relaxation on (4) and discuss its properties. We will then
utilize a convex relaxation for minimizing over the n-th
singular value.

We will first propose a relaxation for the power set
involved in the rank test of (1), and prove its equivalence

in the following theorem. For ease of notation define:

F (λ, α) ,

[
A− λI Bd diag (α)

diag (1− α)Cd 0

]
. (7)

Theorem 10: Given a plant G, and an arbitrary informa-
tion structure S, let Gd denote the diagonalized plant as
in (5). Let λ ∈ C be fixed. Then, there exists an I ⊆
{1, · · · , nu} such that (1) holds, if and only if there exists
an α ∈ [0, 1]a such that:

rank (F (λ, α)) < n, (8)

i.e., λ ∈ Λ (G,S, T s) if and only if (8) holds for some α ∈
[0, 1]a.

Proof: Proof of one direction is obvious and would
only involve rendering the matrix in (8) with additional zero
columns (or rows). Proof of the other direction would be
achieved by observing that dropping a column (or a row),
and multiplying a row (or a column) by a scalar would not
increase the rank.

We will use the same technique as in the above theorem
to approximate (4) by:

σB (G,S) , min
λ∈C
α∈Ba

σn (F (λ, α)) , (9)

and then apply the same relaxation on it to derive the
following optimization problem:

σ� (G,S) , min
λ∈C

α∈[0,1]a

σn (F (λ, α)) , (10)

where dependence on S in (9) and (10) are implicitly through
the diagonalization (5). The following theorem connects the
above approximation to the original problem of (4), when
we have a diagonal information structure Sd.

Theorem 11: Given a plant G, and a diagonal information
structure Sd, we have that:

σVD (G,Sd) = σB (G,Sd) ≥ σ� (G,Sd) . (11)
Proof: We will first prove the equality part. When

S = Sd, we have JĪ = Ī in (4), where I ⊆ {1, · · · , a}.
For i ∈ {1, · · · , a}, let αi = 1 if and only if i ∈ I, and
0 otherwise. Then, given a binary α (or I), the matrix in
the RHS of (4) would be equal to F (λ, α), except for the
additional zero columns (or rows). Since these extra zero
columns (or rows) do not affect the existing singular values,
and could only add zeros to the tail of singular values,
we have that σVD (G,Sd) = σB (G,Sd). Now, to prove
the inequality, observe that since B ⊂ [0, 1] we have that:
σVD (G,Sd) = σB (G,Sd) ≥ σ� (G,Sd).

Remark 12: When S 6= Sd, the equivalence between
σVD (G,S) and σB (G,S) does not hold anymore. However,
due to Theorem 10, we have that:

Λ (G,S, T s) 6= ∅ Rem.6⇐⇒ σVD (G,S) = 0,
Thm.10⇐⇒ σ� (G,S) = 0

Thm.10⇐⇒ σB (G,S) = 0

i.e., in the presence of a fixed mode, both of the relaxed
versions (9) and (10), as well as the Vaz & Davison metric,
will go to zero.
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Next, we will address the optimization over the n-th
singular value. There is still no efficient way to optimize
over σn(·) in the optimization problems (9) and (10). In fact
it has been shown that rank minimization is in general NP-
hard [9]. However, nuclear norm is widely recognized as a
convex heuristic for rank minimization [10]. There are cases
that this heuristic will result in exact solutions to the rank
minimization problem [9], [11], [12]. Accordingly, instead
of σn(·), we will use this heuristic in (9) and (10) to derive
the following counterparts:

σ∗B (G,S) , min
λ∈C
α∈Ba

‖F (λ, α)‖∗ , (12)

where ‖·‖∗ denote the nuclear norm of a matrix. We also
have the following convex optimization problem:

σ∗� (G,S) , min
λ∈C

α∈[0,1]a

‖F (λ, α)‖∗ . (13)

Optimization problems (12) and (13) are the foundations
for the computational methods proposed in the next section.

V. COMPUTATIONAL METHODS

In this section, we will propose three methods to approxi-
mate the decentralized assignability measure of Vaz & Davi-
son. These methods will be based on the relaxations in the
previous section. We will first consider using (13) directly
as to suggest it as the approximated version of the original
metric. Next, we will use the obtained solution from the first
method to form another optimization problem that would
be expected to behave more similarly to the one of the
Vaz & Davison. Lastly, we will use the Alternating Direc-
tion Method of Multipliers (ADMM) to derive an iterative
algorithm for (12).

Method 1 (Nuc):
Let G and an information structure S be given.

1) Construct the diagonalized plant Gd as in (5).
2) Solve the optimization problem (13) with vari-

ables λ ∈ C, and α ∈ [0, 1]a.
3) Name the obtained solution by λ(M1)? and α(M1)? , and

let σM1 denote the n-th singular value of the optimal
matrix in (13).

The optimization problem (13) is convex, and thus could be
solved with available software packages such as cvx toolbox
[13]. However, as Theorem 11 suggests, it is desirable that α
lies in its ideal binary set, i.e., α ∈ Ba. Enforcing α ∈ Ba
would result in a non-convex problem that could not be
readily approached. This is the motivation to consider the
following methods, in which, we will use the obtained
solution from Method 1, and round the elements of the
α(M1)? to the closest binary value, and will then solve (12)
again with fixed α ∈ Ba.

Method 2 (Nuc+Rounding):
Let G and an information structure S be given.

1) Construct the diagonalized plant Gd as in (5).
2) Apply Method 1.
3) Set αF ∈ Ba as: αF ← round

(
α(M1)?

)
.

4) Solve the following optimization problem:

min
λ∈C

∥∥F (λ, αF)
∥∥
∗ . (14)

5) Let σM2 denote the n-th singular value of the optimal
matrix in (14).

Although Method 2 will result in having a binary α, however,
as the elements of α would be farther away from their
ideal binary value, the rounding might not be an effective
strategy, since it would not account for any other binary point
in Ba. This motivated us to consider an alternative iterative
approach to directly address (12) by ADMM.

We will first derive the ADMM based algorithm for
the optimization problem (12), and summarize it later in
Method 3. Problem (12) can be equivalently written as:

minimize ‖X‖∗
such that: X = F (λ, α),

with variables X ∈ R(n+a)×(n+a), λ ∈ C, and α ∈ Ba. The
augmented Lagrangian for this problem can be written as:

Lρ (X,λ, α, Z) = ‖X‖∗+ 〈Z,X − F (λ, α)〉
+ 0.5ρ ‖X − F (λ, α)‖2F

where Z ∈ R(n+a)×(n+a) is the dual variable, and 〈L, V 〉 =
trace

(
LTV

)
. The augmented Lagrangian can be equiva-

lently written as:

Lρ (X,λ, α, Z) = ‖X‖∗+ ρ
2

∥∥X − F (λ, α) + ρ−1Z
∥∥2

F

− (2ρ)−1 ‖Z‖2F ,
(15)

which can be derived by expanding the terms. The ADMM
consists of iteration over minimizing α, the pair (X,λ),
and updating the dual variable Z. We will first derive
minimization over α. To this end, partition X as:

X =


XA XB1 · · · XBa

XC1

...
XCa

XD

 ,
where XA ∈ Rn×n, XBi ∈ Rn×1, and XCi ∈ R1×n. Similar
partitioning also applies to Z. We have that:

α(k+1) = arg min
α∈Ba

Lρ(X
(k), λ(k), α, Z(k))

= arg min
α∈Ba

∥∥∥X(k) − F (λ(k), α) + ρ−1Z(k)
∥∥∥2

F

?
= arg min

α∈Ba

a∑
i=1

fi
(k)(αi) + c,

where the second equality follows by taking the only term
of (15) that depends on α. For all i ∈ {1, · · · , a}, we have
defined fi(k) : R→ R as:

fi
(k)(x) ,

∥∥∥X(k)
Bi + ρ−1Z

(k)
Bi − (Bd)ix

∥∥∥2

F

+
∥∥∥X(k)

Ci + ρ−1Z
(k)
Ci − (Cd)i(1− x)

∥∥∥2

F
,

(16)
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then, the third equality ( ?=) follows since different αi appear
in different rows and columns, and the Frobenius norm
can be written as the square sum of the elements. Also c
gathers all the terms that do not depend on α. Hence, the
α minimization step separates for the individual elements
αi, and thus we can write αi(k+1) = arg minαi∈B fi

(k)(αi),
which would give the following easily checkable condition:

αi
(k+1) =

{
1 if fi(k)(1) ≤ fi(k)(0)

0 otherwise.
(17)

Remark 13: Since the minimization over α separates for
different elements, we would only need to check the function
value at 2a points, rather than 2a points.

Next, we formulate the minimization over the pair (X,λ):

(X(k+1), λ(k+1))

= arg min
X,λ

Lρ(X,λ, α
(k+1), Z(k)) (18)

= arg min
X,λ
‖X‖∗ + 0.5ρ

∥∥∥X − F (λ, α(k+1)) + ρ−1Z(k)
∥∥∥2

F
,

with variables X ∈ R(n+a)×(n+a), and λ ∈ C. The
minimization (18) is a convex optimization problem over the
pair (X , λ).

Lastly, the Z-update step would be:

Z(k+1) = Z(k) + ρ
(
X(k+1) − F (λ(k+1), α(k+1))

)
. (19)

This ADMM based algorithm is thus given as:
Method 3 (ADMM):

Let G and an information structure S be given.
1) Construct the diagonalized plant Gd as in (5).
2) We have that X ∈ R(n+a)×(n+a), λ ∈ C, α ∈ Ba,

and Z ∈ R(n+a)×(n+a). Initialize k ← 0, and let
X(0), λ(0), α(0), Z(0) be all initialized to 0 as well.

3) Update α(k+1) as (17).
4) Update X(k+1) and λ(k+1) as (18).
5) Update Z(k+1) as (19).

6) Let σ(k+1)
n = σn

(
F (λ(k+1), α(k+1))

)
.

7) If
∣∣∣σ(k+1)
n − σ(k)

n

∣∣∣ < ε, go to step 8, else let
k ← k + 1, and go to step 3.

8) Let σM3 = mink≥1 σ
(k)
n .

The following theorem will state that the σM3 obtained
from Method 3 would be an upper bound for the Vaz & Davi-
son metric, for a diagonal information structure Sd.

Theorem 14: Assume that a plant G, and a diagonal
information structure Sd are given. Apply Method 3, and
let σ(k)

n and σM3 be respectively given as in Step 6 and 8 of
Method 3, then for all k ≥ 1, we have that:

σ(k)
n ≥ σVD (G,Sd) , (20a)
σM3 ≥ σVD (G,Sd) . (20b)

Proof: Proof is achieved by observing that at each
iteration we are evaluating the objective on a feasible point,
and therefore it would result in an upper bound.

Since the optimization problem (12) that ADMM tries to
solve is non-convex, due to the binary constraints, the usual
convergence results cannot be applied, and it is unlikely that
global optimality will be able to be guaranteed. As one can
begin to see in the next section, initial empirical results are
extremely promising, showing it clearly outperforming the
other algorithms and closely tracking the Vaz & Davison
metric.

VI. NUMERICAL EXAMPLES

In this section, we will provide numerical examples to
compare the three proposed methods. All the plants are
strictly proper, stable, and LTI, and are further centrally
controllable and observable.

Example 15: Consider the following plant, with parameter
β ∈ R:

A =

[
−1 0
0 −3

]
, B =

[
1 0
0 1

]
, C =

[
0 β
1 1

]
,Kbin =

[
1 0
0 1

]
.

This plant has a fixed mode only at β = 0. We vary β and
plot the n-th singular value obtained from the three proposed
methods in this paper in Figure 1. The Vaz & Davison metric
(σVD (G,S) in (4)) is computed for the numerical examples
by evaluating the singular values over a discrete grid in the
complex plane for each of the 2nu − 2 possible subsets I,
which is clearly only an option for very small problems.
The black curve is the Hankel based metric for decentralized
settings in [3, Theorem 16]. In this example, the results of
Method 1 and Method 2 collide, meaning that the α in
Method 1 was already very close to its binary value. We
would like to have similar behaviour to the Vaz & Davison
metric, and we see that both Method 1 and Method 2 are
outperformed by the ADMM algorithm of Method 3. Also,
they all behave similarly near the fixed mode.
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Fig. 1: Comparison of Singular Values for Example 15

Next, we give another example for which the result of
Method 1 and Method 2 would be different, and would no
more be similar near a fixed mode.

Example 16: Consider the plant given by:

A = diag(−1,−1,−1,−5),

B =

 0 0 1 0
0 1 0 0

−1 0 1 0
−1 3 1 2

 , C =

1 0 β 0
1 1 0 0
1 0 1 0
0 3 0 4

 ,S = Sd.
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This plant has a fixed mode at β = 1. We again vary β
and plot the singular value obtained from the three proposed
methods, the Vaz & Davison metric, and the Hankel based
metric in Figure 2. We see that Method 1 fails to detect the
fixed mode, as it is non-zero at β = 1. Method 2 would detect
the fixed mode, and would be close to the ideal case of Vaz
& Davison near the fixed mode, but will give an unrealistic
approximation as we get farther away from the fixed mode.
The ADMM approach of Method 3 has the same shape as
the ideal case, and closely tracks it. Also, we again see that
the Hankel based metric goes to 0 only at the fixed mode,
and tracks the assignability measure near the fixed mode.
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Fig. 2: Comparison of Singular Values for Example 16

Lastly, we will give an example where the Hankel based
metric fails to be zero only at the presence of a fixed mode,
but the ADMM approach of Method 3 would still follow the
ideal case closely.

Example 17: Consider the following plant:

A = diag (−2,−1,−1) ,

B =

[
0 0 1
1 0 0
0 1 β

]
, C =

[
1 0 β
0 1 0
0 0 1

]
,Kbin =

[
1 0 0
1 0 0
0 1 1

]
.

This plant has a fixed mode only at β = 0. Similar to
Example 15, we vary β and plot the n-th singular value
obtained from the three proposed methods, the Vaz & Davi-
son metric, and the Hankel based metric in Figure 3. The
Hankel based metric is zero for all β, even when the plant
has no fixed mode, and thus fails in this example. All the
three proposed methods would detect the fixed mode in this
case. However, we see that ADMM approach of Method 3
still has the closest behaviour to the ideal case.

VII. CONCLUSION

We considered the problem of how far a plant is from
having a fixed mode. The decentralized assignability measure
of Vaz and Davison suggests an optimization problem for
computation of this measure, but it is hard to compute. We
considered three methods to approximate the aforementioned
measure. First, we relaxed the objective of the Vaz and
Davison measure by replacing the n-the singular value with
the nuclear norm, and minimizing it over the convex hull of
the binary set. We then used the solution of this method to
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Fig. 3: Comparison of Singular Values for Example 17

set the relaxed variable toward its closest binary value, and
then solve another optimization problem. Lastly, we used
the ADMM framework to derive an algorithm that would
only require testing a linear number of function values over
the decoupled variable. Numerical examples have shown that
this method provides a close approximation of the Vaz and
Davison metric across a variety of different types of fixed
modes.
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