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Abstract

We consider the problem of constructing decentralized
control systems. We formulate this problem as one of
minimizing the closed-loop norm of a feedback system
subject to constraints on the controller structure. We
define the notion of quadratic invariance of a constraint
set with respect to a system, and show that if the con-
straint set has this property, then the constrained mini-
mum norm problem may be solved via convex program-
ming. We also show that quadratic invariance is neces-
sary and sufficient for the constraint set to be preserved
under feedback.

We develop necessary and sufficient conditions un-
der which the constraint set is quadratically invariant,
and show that many examples of decentralized synthe-
sis which have been proven to be solvable in the liter-
ature are quadratically invariant. As an example, we
show that a controller which minimizes the norm of the
closed-loop map may be efficiently computed in the case
where distributed controllers can communicate faster
than the propagation delay of the plant dynamics.

Keywords: Decentralized control, convex optimization

1 Introduction

An important problem in control is that of constructing
decentralized control systems, where instead of a single
controller connected to a physical system, one has mul-
tiple separate controllers, each with access to different
measured information and with authority over differ-
ent decision or actuation variables. Examples of such
systems include automobiles on the freeway, the elec-
tricity distribution grid, flocks of aerial vehicles, and
spacecraft moving in formation.

There are many variations of this problem, depending
on how the limited availability of information is speci-
fied, the structure of the physical systems, and whether
and how separate controllers can communicate. These
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variations correspond to structural features of the sys-
tem and structural constraints on the allowable con-
trollers, such as sparsity constraints. In general, find-
ing a norm-minimizing controller subject to such con-
straints is not a convex optimization problem, and in
many cases it is intractable. In this paper we show
that if the constraints on the controller satisfy a partic-
ular property, called quadratic invariance, with respect
to the system being controlled, then the constrained
minimum-norm control problem may be reduced to a
convex optimization problem.

1.1 Notation

We make use of the following notation. If X and Y
are Banach spaces, we denote by L(X,)) the set of
all bounded linear maps A : X — ). We abbreviate
L(X,X)to L(X). Amap A € L(X) is called invertible
if there exists B € L(X) such that AB = BA = I. For
S C X and T C X* define

Sl:{x*eX*; (x, ™)y =0 for alleS}
lT:{xeX; <x,z*>:0forallx*€T}

where X* is the dual-space to X. For any map
A € L(X) define the resolvent set p(A) by p(A) =
{A € C; (A — A) is invertible} and the resolvent R4 :
p(A) — L(X) by Ra(A) = (M — A)~! for all X € p(A).
We also define py,.(A) to be the unbounded connected
component of p(A).

As is standard, Lo is the Hilbert space of square in-
tegrable functions f : Ry — X. For ¢ > 0 define the
delay map D, : Lo — Lo by

u(t—c) ift>c

0 otherwise

y=Deu if y(t) :{

1.2 Preliminaries

Suppose U, W, Y, Z are Banach spaces, and P is a con-
tinuous linear map P : W x U — Z x ). Partition P

as
Py Pro

P =
{Pm P22:|

sothat P11 : W — Z, Po: U — Z, Pyy : W — )Y and
Py, : U — Y. Suppose K € L(Y,U). If I — Py K is
invertible, define f(P, K) € L(W, Z) by

f(P,K) = Py + PoK(I — Py K) Py



The map f(P,K) is called the (lower) linear frac-
tional transformation (LFT) of P and K; we will
also refer to this as the closed-loop map. Given
Pyy € L(U,Y), we define the set M C L(Y,U) of con-
trollers K such that f(P, K) is well-defined by

M = {K e LU ; (I - PpK) is invertible}
and define the subset N C M by
N = {K e LU ;1€ puc(PQQK)}

In the remainder of the paper, we abbreviate our nota-
tion and define G = Pss.

1.3 Problem formulation

Suppose S C L(Y,U) is a closed subspace. Given P €
LW x U, Z x YY), we would like to solve the following
problem.
minimize ||f(P, K)||
subject to K € S (1)
KeM

Here ||-|| is any norm on L(W, Z), chosen to encapsulate
the control performance objectives, and the constraint
that K € S may represent sparsity or delay constraints
on K. We call the subspace S the information con-
straint.

This problem is very general, in the sense that the
signal spaces U, W, Y, Z may be continuous-time, such
as Lo, or discrete-time, such as {5, and the signals and
systems may evolve over infinite time, with U, W, ), Z
function spaces over [0,00) or Z,, or over finite time
intervals. Also the norm on L(W, Z) may represent ei-
ther a deterministic measure of performance, such as
the induced norm, or a stochastic measure of perfor-
mance, such as the Hs norm.

It is also important to notice that the controller K
is required to be linear. While this is a serious and
non-trivial limitation, it allows us to state very sharp
conditions under which the problem may be solved. Im-
portant work has also considered related problems for
nonlinear control with a stochastic performance index;
see Section 2.

Both P and K are required to be bounded maps.
In particular, if P and K are represented by rational
transfer functions, this requirement is tantamount to
the constraint that P and K be stable. We relax this
constraint in Section 4.1 below.

This problem is made substantially more difficult in
general by the constraint that K lie in the subspace
S. Without this constraint, the problem may be solved
by a simple change of variables, as discussed below.
Note that the cost function ||f(P, K)|| is in general a
non-convex function of K. Even for finite-dimensional
spaces U, W, Y, Z, no computationally tractable ap-
proach is known for solving this problem for arbitrary P
and S.

1.4 Quadratic invariance

The following is the major property that we will use in
this paper.

Definition 1. Suppose G € L(U,Y), and S C L(Y,U).
The set S is called quadratically invariant under G
if

KGK € S forall K € S

Note that, given G, we can define a quadratic map
U LQ,U) — L(Q,U) by ¥(K) = KGK. Then a
set S is quadratically invariant if and only if S is an
invariant set of ¥; that is ¥(S) C S.

In the following, we will show that, subject to appro-
priate technical assumptions on S and G, a subspace S
is quadratically invariant if and only if

KI-GK)'eS <+ K¢S

It is a consequence of this result that, when S is
quadratically invariant, the set of achievable closed-
loop maps

{Pll +P12K(I—GK)71P21 3 K e S}
is affine, and hence convex.

1.5 Some examples

Many standard centralized and decentralized control
problems may be represented in the form of prob-
lem (1), for specific choices of P and S. Examples
include the following.

Perfectly decentralized control. We would like to
design n separate controllers {K1,..., K,}, with con-
troller K; connected to subsystem G; of a coupled sys-
tem, as in the diagram below.

78w Y Y Y 5
J

i
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When reformulated as a synthesis problem in the
LFT framework above, the constraint set S is

S = {K e L U): K = diag(Kl,...,Kn)}

that is, S consists of those controllers that are block-
diagonal.

Delayed measurements. In this problem, we have
n linear time-invariant subsystems {Gq,...,G,}, each
with its respective controller K;, arranged so that sub-
system ¢ receives signals from controller i after a com-
putational delay of ¢, and controller i receives measure-
ments from subsystem j with a transmission delay of
t|i — j|. Also subsystem i receives signals from subsys-
tem ¢ + 1 delayed by propagation delay p.



When reformulated as a synthesis problem in the
LFT framework, the constraint set S may be defined
as follows. Let K € S if and only if

D.Hyy  DyycHio DoyycHis
K= | Dy cHy1t DcHay  DyycHas
Doy Hz1 DiycHzs  D.Hss
for some linear time-invariant maps H;;. The diagram
below illustrates this when n = 3.

Gy . Go
Dy ¢
=

I Y

K Ko

We will return to this example in Section 5.3, where,
as an example of the utility of our approach, we provide
conditions under which it may be solved via convex
programming.

2 Prior work

The research in this area has a long history, and there
have been many striking results which illustrate the
complexity of this problem. Important early work in-
cludes that of Radner [16], who developed sufficient
conditions under which minimal quadratic cost for a
linear system is achieved by a linear controller. An
important example was presented in 1968 by Witsen-
hausen [21] where it was shown that for quadratic
stochastic optimal control of a linear system, subject
to a decentralized information constraint called non-
classical information, a nonlinear controller can achieve
greater performance than any linear controller. An ad-
ditional consequence of the work of [14, 21] is to show
that under such a non-classical information pattern the
cost function is no longer convex in the controller vari-
ables, a fact which today has increasing importance.
With the myth of ubiquitous linear optimality re-
futed, an effort began to classify the situations when
it holds. In a later paper [22], Witsenhausen summa-
rized several important results on decentralized control
at that time, and gave sufficient conditions under which
the problem could be reformulated so that the standard
Linear-Quadratic-Gaussian (LQG) theory could be ap-
plied. Under these conditions, an optimal decentralized
controller for a linear system could be chosen to be lin-
ear. Ho and Chu [11], in the framework of team the-
ory, defined a more general class of information struc-
tures, called partially nested, for which they showed the

optimal LQG controller to be linear. Roughly speak-
ing, a plant-controller system is called partially nested
if whenever the information of controller A is affected
by the decision of a controller B, then A has access
to all information that B has. The ideas in this pa-
per are related to those of [11] although differ signifi-
cantly in technical approach and problem formulation.
Our main results determine precisely those information
structures which are invariant under feedback, allowing
convex synthesis of optimal linear controllers.

The computational complexity of decentralized con-
trol problems has also been extensively studied. Cer-
tain decentralized control problems, such as the static
team problem of [16], have been proven to be in-
tractable. Blondel and Tsitsiklis [3] showed that the
problem of finding a stabilizing decentralized static out-
put feedback is NP-complete. This is also the case for a
discrete variant of Witsenhausen’s counterexample [15].
However, there are also positive results, such as the
conditions for decentralized stabilizability developed by
Wang and Davison [20]. Other methods have also been
developed; see for example [17].

For particular information structures, the controller
optimization problem may have a tractable solution,
and in particular, it was shown by Voulgaris [18] that
the so-called one-step delay information sharing pattern
problem has this property. In [10] the LEQG problem is
solved in this framework, and in [18] the H2, Hoo and
L1 control synthesis problems are solved. A class of
structured space-time systems has also been analyzed
in [2], and shown to be reducible to a convex program.

Another approach to control of certain types of dis-
tributed systems has been via Fourier theory. The key
idea is that, in the analysis of a spatially distributed
system, it is often possible to describe the dynamics in
terms of partial differential equations, or in the case of
spatially discrete systems, partial difference equations.
To control these systems, a theory is required which
can handle multiple independent variables [5, 12]. Tak-
ing the Laplace transform with respect to time, and
a Fourier transform with respect to n spatial indepen-
dent variables, leads to a representation of the system
as a transfer function, typically a rational function of
n + 1 variables. Recent results in distributed control
have made use of this multidimensional approach spa-
tial invariance to give algorithms for control analysis
and synthesis [1, 7, 8, 9], giving computational algo-
rithms in terms of linear matrix inequalities.

3 Parametrization of realizable maps

In this section, we review the standard approach to so-
lution of the feedback optimization problem (1) when
the constraint that K lie in S is not present. In this
case, one may use the following standard change of vari-
ables. Define the map h: M — L(Y,U) by

h(K)=—-K(I—-GK)™' forall K€ M



‘We now show that A is an involution on M.

Lemma 2. For any G € L(U,Y), the map h satisfies
image(h) = M, and h : M — M s a bijection, with
hoh=1.

Proof. Let @ = h(K). Then a straightforward cal-
culation shows that (I — GQ)(I — GK) = I, hence
image(h) C M. Tt is then immediate that K = —Q (I —
GQ)~! = h(Q), hence ho h = I and image(h) = M. m

This lemma is very useful, since we have
f(P,K) = P11 — Piah(K) Py

Hence we have the standard parametrization of all
closed-loop maps which are achievable by bounded con-
trollers K. Now we can reformulate the optimization
of (1) as the following equivalent problem.

minimize || Py — P12QPa ||

subject to Qe M

(2)

The closed-loop map is now affine in (), and its norm
is therefore a convex function of ). After solving this
problem to find @, one may then construct the optimal
K for problem (1) via the transformation K = h(Q).

This parametrization is related to the well-known in-
ternal model principle and Youla parametrization of
stabilizing controllers. Note however that we are not
considering all @ € L()Y,U), only those Q@ € M. In
many cases of practical interest M is dense in L(Y,U).
For transfer functions, a slightly different parametriza-
tion is appropriate; see Section 4.1 below.

Applying the above change of variables to prob-
lem (1), we arrive at the following optimization prob-

lem.
minimize ||Py; — P12QPa ||

subject to @ € M (3)
subject to  h(Q) € S
The set
{@enm; n@Qes}
is not convex in general, and hence this problem is not

easily solved. Note that this set is equal to h(S N M)
by Lemma 2.

4 Quadratically invariant constraints
under feedback

Before proving our main result, we state the following
preliminary lemmas.

Lemma 3. Suppose G € L(U,)), and S C L(Y,U) is
a subspace. If S is a quadratically invariant under G,
then

K(GK)" e S forall K€ S, neZy

Proof. We prove this by induction. By assumption,
given K € S, we have that KGK € S. For the induc-
tion step, assume that K(GK)"™ € S for some n € Z.
Then

2K(GK)"" = (K + K(GK)")G(K + K(GK)™)
- KGK — K(GK)**!

and since all terms on the right hand side of this equa-
tion are in S, we have K(GK)"*! € S. ]

Lemma 4. Suppose D C C is an open set, X is a Ba-
nach space, and q : D — X s analytic. Suppose that
x € D, and f(y) = 0 for all y in an open neighbor-
hood of x. Then f(y) = 0 for all y in the connected
component of D containing x.

Proof. See for example Theorem 3.7 in [6]. N

Lemma 5. Suppose X and Y are Banach spaces, D C
C is an open set, and A : X — Y is a bounded linear
operator. Suppose q : D — X is analytic, and r : D —
Y is given by r = Aoq. Then r is analytic.

Proof. This is a straightforward consequence of the
definitions. |
Lemma 6. Suppose K € L(Y,U), G € LU,Y), and
e L(Y,U)*. Define the function qr : p(GK) — C by
ar(A) = (KRak (A),T).
Then qr is analytic.
Proof. Define the linear map ~ : L(Y) — C by
v(G) = (KG,T") forall G € L(Y).

Clearly v is bounded, since

VI < IKNITHIGH for all G € L(Y).

Further qr = 7 o Rgk, and the resolvent is analytic,
hence by Lemma 5 we have that gr is analytic. ]

Main results. The following is the main result of
this paper. It states that given G, if we have any con-
straint set S which is quadratically invariant, then the
information constraints on K are equivalent to affine
constraints on the map Q = h(K).

Theorem 7. Suppose G € L(U,Y), and S C L(Y,U)
s a closed subspace. Further suppose NNS =MnNS.
Then

S is quadratically-invariant <= h(SNM)=SNM

Proof. (=) Suppose K € SN M. We first show
that h(K) € SNM. For any I' € S+ define the function
gr : p(GK) — C by

qr(\) = (KM — GK)™1,T).



For any A such that |A| > ||GK]|, the Neumann series
expansion for Rgx gives

oo
KA —=GK)™' =Y A" UEK(GK)"
n=0
By Lemma 3 we have K(GK)™ € S for all n € Z, and
hence K(A\ —GK)~! € S since S is a closed subspace.
Thus,

gr(A) =0 for all X such that |A| > [|GK]|

By Lemma 6, the function gr is analytic, and since
A € puc(GK) for all || > |GK]|, by Lemma 4 we have

gr(A) =0 for all A € p,.(GK).

It follows from K € N that 1 € p,.(GK), and therefore
gr(1) = 0. Hence

(K(I -GK)™T)=0 forallT €S+
This implies
K(I—-GK)™ e *+(sh).
Since S is a closed subspace, we have +(S+) = S (see
for example [13], p. 118) and hence we have shown K €
SNM = h(K) € S. Since h is a bijective involution

on M, it follows that h(SN M) = SN M which was the
desired result.

( <= ) We now turn to the converse of this result.
Suppose S is not quadratically invariant. Then there
exists Koy € S, such that KoGKy ¢ S. We will con-
struct K € SN M such that h(K) ¢ SN M. Without
loss of generality we may assume ||[Ky|| = 1. Choose
I € S+ with ||T'|| = 1 such that

8= <KOGKO,F> €eR and ﬁ > 0,
and choose a € R such that

p
G113+ G

Let K = aKy. Then ||GK|| <1, K € SN M, and

I<a<

(K(I-GK)™\T) =Y (K(GK)',T)
i=0
where we have used the fact that the map v defined in
Lemma 6 is bounded. Hence
> (K (GH).D)

=0

- ‘a2ﬁ+ i<K(GK)i,F>\
1=2

(K(I-GK)™".T)| =

>a’f-a) |G

i=2
_ a2<ﬂa|Gll(6+ ||G|)>
el
>0
Hence K(I — GK)~! ¢ S as required. |

Corollary 8. Suppose G :U — Y is compact and S C
L(Y,U) is a closed subspace. Then

S is quadratically-invariant <= h(SNM)=SNM

Proof. This follows since if G is compact then GK
is compact for any K € S, and hence the spectrum of
GK is countable, and so N = M. ]

4.1 Transfer functions
Notation. We need some additional notation specif-
ically for transfer functions. Let

iR={z€C; R(z) =0}

A rational function G : jR — C is called real-rational
if the coefficients of its numerator and denominator
polynomials are real. Similarly, a matrix-valued func-
tion G : jR — C™*" is called real-rational if G;; is
real-rational for all 4, j. It is called proper if

lim G(jw) exists and is finite,
and it is called strictly proper if
lim G(jw) = 0.
w—00

Let R;**™ be the set of matrix-valued real-rational
proper transfer functions

R;nxn _ {G R — Cc™*™ . @ proper, real-rational}
and let R, *" be
xn _ xn :
Rey " = {G € R,*™ 5 G strictly proper}

If A€ Ry*™ we say A is invertible if lim,, ., A(jw)
is an invertible matrix and A(jw) is invertible for al-
most all w € R. Note that this is different from the
definition of invertibility for the associated multipli-
cation operator on L. If A is invertible we write
B = A7l if B(jw) = A(jw)~! for almost all w € R.
Note that, if G € Reg ™™ then I — GK is invertible for
all K € Rp" ™",

Given G € Ry "™, we define the map h : Rp™ ™™ —
R;Lyx”u by

hK)=—-K( - GK)fl for all K € RZany

IfsS c T\’,;L"X"y is a subspace, we say S is frequency
aligned if there exists a subspace Sy € R™*™ such
that

S = {K € Ry ™™ ; K(jw) € Sp for almost all w € R}

As in the case when G is a linear operator, we say S is
quadratically invariant under G if

KGK e S forall K € S

We then have the following version of Theorem 7 for
transfer functions.



Theorem 9. Suppose G € Rgy ™™, and S C Rp" ™™
s a frequency aligned subspace. Then

S is quadratically invariant < h(S) =S

Proof. The proof follows from application of The-
orem 7 to the matrices G(jw) and subspace S, for
all w e R. ]

4.2 Optimization over transfer functions

We now have the following equivalent problems. Sup-
pose G € Ryy™™ and S C Rp*™ ™ is a frequency

aligned subspace. Then K is optimal for the problem

minimize ||f(P, K)||
subject to K € S

(4)

if and only if K = h(Q) and @ is optimal for

minimize || Py — P12QPa ||

subject to @ € S

()

This is a convex optimization problem. Solution of this
problem is described in [4].

5 Examples

5.1 Sparsity constraints and computation

Many problems in decentralized control can be ex-
pressed in the form of problem (4), where S is the set of
controllers that satisfy a specified sparsity constraint.
In the previous section we showed that quadratic invari-
ance of the associated subspace allowed this problem to
be solved via convex optimization. In this section, we
provide a computational test for quadratic invariance
when the subspace S is defined by sparsity constraints.
First we need a little more notation.

Suppose AP € {0,1}™*" is a binary matrix. We
define the subspace

Sparse( AP = {B e R™ "™ B;; =0 for all 4,
such that A;; = O}

Also, if B € R™*"™ is a matrix, let Pattern(B) be the
binary matrix given by

AP™ = Pattern(B)  if AP = {0 if By =0

* 1 otherwise

The following provides the desired computational test.

Theorem 10. Suppose KP™ € {0,1}"*"  and S =
Sparse( KP™). Suppose further that GP™ = Pattern(G).
Then S is quadratically invariant under G if and only
if

Kb Gl K (1 KUY =0

foralli,l=1,...,ny and j,k=1,...,n,.

We omit the proof of the above result regarding spar-
sity constraints due to space constraints. This result
shows that quadratic invariance can be checked in time
O(n*), where n = max{n,, ny}.

It is also worth noting that, if S is defined by sparsity
constraints, then S is quadratically invariant under G
if and only if it is quadratically invariant under all ma-
trices with the same sparsity pattern. In general, if S
is not defined by sparsity constraints, then this is not
true. An example of this is when G is symmetric; then
the subspace consisting of symmetric K is quadratically
invariant.

5.2 Example sparsity patterns

Perfect recall. A matrix A € R™*" is called a sky-
line matrix ifforalli=2,... mandallj=1,... n,

Ai—l,j:() if Ai,j =0

An example is

Kbin —

== o OO
=
= =0 O O
(el en R e il s M)
= O O OO

Suppose G is lower triangular and K" is a lower tri-
angular skyline matrix. Then S = Sparse(K"") is
quadratically invariant under G. This case was dis-
cussed as a tractable problem in [22], where the infor-
mation structure is called perfect recall.

The case when G and S have the same structure.
It is important to notice that G and S having the same
sparsity structure does not imply that S is quadratically
invariant under G. For example, consider

0 0 O
G=1|1 0 0
0 1 1

and let S = Sparse(G). Then S is not quadratically
invariant, as G* ¢ S.

5.3 Distributed control with delays

We now consider the distributed control problem dis-
cussed in Section 1.5. Suppose there are n subsystems
with transmission delay ¢ > 0, propagation delay p > 0
and computational delay ¢ > 0. When expressed in
linear-fractional form, we define the allowable set of
controllers is as follows. Let K € S if and only if

D.Hyy D Hip
Dt+cH21 DCH22

D(nfl)t+cH1n

D n—2 cHQn
K — ( )jf+

D(nfl)t+cHn1 DcHnn



for some H;; € R, of appropriate spatial dimensions.
The corresponding system G is given by

A DA Dn—1)pAin
DpA21 A22 D(n—Z)pAQn
G= . .
D(n—l)pAnl s Ann

for some A;; € Rp.

Theorem 11. Suppose G and S are defined as above.
Then if

c
t<p+-—r
n—1

then S is quadratically invariant under G.

Proof. We omit the proof due to space constraints. m

Other problems that have been studied in the liter-
ature and shown to be reducible to convex programs
include the one-step-delayed information pattern [10],
and the triangular and symmetric information pat-
terns [19]. These problems may also be shown to be
quadratically invariant.

6 Conclusions

In this paper we have developed the notion of quadratic
invariance, and we have shown that minimum-norm
control problems subject to information constraints
that are quadratically invariant with respect to a plant
G may be solved using convex programming. We have
also shown that quadratic invariance is necessary and
sufficient for the constraint set to be preserved under
feedback. We have provided a computational test for
quadratic invariance, and shown that many standard
examples of solvable constrained optimal control prob-
lems are quadratically invariant.
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