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Abstract

We consider the problem of constructing decentralized
control systems for unstable plants. We formulate this
problem as one of minimizing the closed-loop norm of a
feedback system subject to constraints on the controller
structure, and explore which problems are amenable to
convex synthesis.

For stable systems, it is known that a property called
quadratic invariance of the constraint set is important.
If the constraint set is quadratically invariant, then the
constrained minimum-norm problem may be solved via
convex programming. Examples where constraints are
quadratically invariant include many classes of sparsity
constraints, as well as symmetric constraints. In this
paper we extend this approach to the unstable case,
allowing convex synthesis of stabilizing controllers sub-
ject to quadratically invariant constraints.

Keywords: Decentralized control, convex optimization

1 Introduction

Much of conventional controls analysis assumes that
the controllers to be designed all have access to the
same measurements. With the advent of complex sys-
tems, decentralized control has become increasingly im-
portant, where one has multiple controllers each with
access to different information. Examples of such sys-
tems include flocks of aerial vehicles, autonomous au-
tomobiles on the freeway, the power distribution grid,
spacecraft moving in formation, and paper machining.

In a standard controls framework, the decentraliza-
tion of the system manifests itself as sparsity or delay
constraints on the controller to be designed. These con-
straints vary depending on the structure of the physical
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systems, and how separate controllers can communi-
cate. In general, there is no known method of formulat-
ing the problem of finding a norm-minimizing controller
subject to such constraints as a convex optimization
problem. In many cases the problem is intractable.

In the case where the plant is stable, it has been
shown that if the constraints on the controller satisfy
a particular property, called quadratic invariance, with
respect to the system being controlled, then the con-
strained minimum-norm control problem may be re-
duced to a convex optimization problem. Such quadrat-
ically invariant constraints arise in many practical con-
texts. In this paper we show that for unstable plants,
the same condition allows us to synthesize optimal sta-
bilizing controllers via convex programming.

1.1 Prior Work

There have been several key results regarding controller
parameterization and optimization which we will ex-
tend for decentralized control. The celebrated Youla
parameterization [19] showed that given a coprime fac-
torization of the plant, one may parameterize all stabi-
lizing controllers. The set of closed-loop maps achiev-
able with stabilizing controllers is then affine in this pa-
rameter, an important result which converts the prob-
lem of finding the optimal stabilizing controller to a
convex optimization problem, given the factorization.
Zames proposed a two-step compensation scheme [20]
for strongly stabilizable plants, that is, plants which
can be stabilized with a stable compensator. In the
first step one finds any controller which is both stable
and stabilizing, and in the second one optimizes over
a parameterized family of systems. This idea has been
extended to nonlinear control [1], and in this paper we
give conditions under which it can be extended to de-
centralized control.

In this paper we start with a single decentralized con-
troller which is both stable and stabilizing, and use it
to parameterize all stabilizing decentralized controllers.
The resulting parameterization expresses the closed-
loop system as an affine function of a stable parameter,
allowing the next step, optimization of closed-loop per-
formance, to be achieved with convex programming.
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Techniques for finding an initial stabilizing controller
for decentralized systems are discussed in detail in [13],
and conditions for decentralized stabilizability were de-
veloped in [16].

The problem of finding the best decentralized con-
troller for a stable plant, intimately related to the sec-
ond step, also has a long history, and there have been
many striking results which illustrate the complexity
of this problem. Important early work includes that
of Radner [11], who developed sufficient conditions un-
der which minimal quadratic cost for a linear system
is achieved by a linear controller. An important exam-
ple was presented in 1968 by Witsenhausen [17] where it
was shown that for quadratic stochastic optimal control
of a linear system, subject to a decentralized informa-
tion constraint called non-classical information, a non-
linear controller can achieve greater performance than
any linear controller. An additional consequence of the
work of [8, 17] is to show that under such a non-classical
information pattern the cost function is no longer con-
vex in the controller variables, a fact which today has
increasing importance.

With the myth of ubiquitous linear optimality re-
futed, an effort began to classify the situations when
it holds. In a later paper [18], Witsenhausen summa-
rized several important results on decentralized control
at that time, and gave sufficient conditions under which
the problem could be reformulated so that the standard
Linear-Quadratic-Gaussian (LQG) theory could be ap-
plied. Under these conditions, an optimal decentralized
controller for a linear system could be chosen to be lin-
ear. Ho and Chu [7], in the framework of team theory,
defined a more general class of information structures,
called partially nested, for which they showed the opti-
mal LQG controller to be linear.

The computational complexity of decentralized con-
trol problems has also been extensively studied. Cer-
tain decentralized control problems, such as the static
team problem of [11], have been proven to be in-
tractable. Blondel and Tsitsiklis [3] showed that the
problem of finding a stabilizing decentralized static out-
put feedback is NP-complete. This is also the case for a
discrete variant of Witsenhausen’s counterexample [9].

For particular information structures, the controller
optimization problem may have a tractable solution,
and in particular, it was shown by Voulgaris [14] that
the so-called one-step delay information sharing pattern
problem has this property. In [5] the LEQG problem is
solved in this framework, and in [14] the H2, H∞ and
L1 control synthesis problems are solved. A class of
structured space-time systems has also been analyzed
in [2], and shown to be reducible to a convex program.
Several information structures are identified in [10] for
which the problem of minimizing multiple objectives
is reduced to a finite-dimensional convex optimization
problem.

It was shown in [12] that a property called quadratic
invariance is necessary and sufficient for the constraint
set to be preserved under feedback. In the case
where the plant is stable, this allows the constrained
minimum-norm control problem to be reduced to a con-
vex optimization problem. The tractable structures
of [2, 5, 7, 10, 14, 15, 18] can all be shown to satisfy
this property. In this paper we show that when the
plant is unstable, the notion of quadratic invariance
may also be used to formulate conditions under which
one can synthesize optimal stabilizing controllers via
convex programming.

This paper extends [12] to unstable systems and ex-
tends Section III of [20] to decentralized control.

1.2 Preliminaries

Denote by Rm×np the set of matrix-valued real-rational
proper transfer matrices and let Rm×nsp be the set of
matrix-valued real-rational strictly proper transfer ma-
trices.

Suppose P ∈ R(nz+ny)×(nw+nu)
p , and partition P as

P =

[
P11 P12

P21 P22

]

where P11 ∈ Rnz×nwp . For K ∈ Rnu×nyp such that
I − P22K is invertible, the linear fractional trans-
formation (LFT) of P and K is denoted f(P,K), and
is defined by

f(P,K) = P11 + P12K(I − P22K)−1P21

In the remainder of the paper, we abbreviate our no-
tation and define G = P22. This interconnection is
shown in Figure 1. We will also refer to f(P,K) as the
closed-loop map.

P11 P12

P21 G

K

w

uy

z

v1 v2

Figure 1: Linear fractional interconnection of P and K

We say that K stabilizes P if in Figure 1 the
nine transfer matrices from w, v1, v2 to z, u, y belong
to RH∞. We say that K stabilizes G if in the fig-
ure the four transfer matrices from v1, v2 to u, y be-
long to RH∞. P is called stabilizable if there ex-
ists K ∈ Rnu×nyp such that K stabilizes P , and it
is called strongly stabilizable if there exists K ∈
RHnu×ny∞ such that K stabilizes P . We denote by
Cstab ⊂ Rnu×nyp the set of controllers K ∈ Rnu×nyp
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which stabilize P . The following standard result relates
stabilization of P with stabilization of G.

Theorem 1. Suppose G ∈ Rny×nusp and P ∈
R(nz+ny)×(nw+nu)
p , and suppose P is stabilizable. Then

K stabilizes P if and only if K stabilizes G.

Proof. See, for example, Chapter 4 of [6].

1.3 Problem Formulation

Suppose S ⊂ Rnu×nyp is a subspace. Given P ∈
R(nz+ny)×(nw+nu)
p , we would like to solve the following

problem

minimize ‖f(P,K)‖
subject to K stabilizes P

K ∈ S
(1)

Here ‖·‖ is any norm on Rnz×nwp , chosen to encapsulate
the control performance objectives, and S is a subspace
of admissible controllers which encapsulates the decen-
tralized nature of the system. The norm on Rnz×nwp

may be either a deterministic measure of performance,
such as the induced norm, or a stochastic measure of
performance, such as the H2 norm. Many decentralized
control problems may be posed in this form. We call
the subspace S the information constraint .

This problem is made substantially more difficult in
general by the constraint that K lie in the subspace S.
Without this constraint, the problem may be solved by
a simple change of variables, as discussed below. For
specific norms, the problem may also be solved using
a state-space approach. Note that the cost function
‖f(P,K)‖ is in general a non-convex function of K.
No computationally tractable approach is known for
solving this problem for arbitrary P and S.

1.4 Quadratic Invariance

We now turn to the main focus of this paper, which is
characterizing which constraint sets S lead to tractable
solutions for problem (1). In [12], a property called
quadratic invariance was introduced for general linear
operators. We define this here for the special case of
transfer functions.

Definition 2. Suppose G ∈ Rny×nusp , and S ⊂ Rnu×nyp .
The set S is called quadratically invariant under G
if

KGK ∈ S for all K ∈ S

Note that, given G, we can define a quadratic map
Ψ : Rnu×nyp → Rnu×nyp by Ψ(K) = KGK. Then a
set S is quadratically invariant if and only if S is an
invariant set of Ψ; that is Ψ(S) ⊂ S. If S ⊂ Rnu×nyp

is a subspace, we say S is frequency aligned if there
exists a subspace S0 ∈ Cnu×ny such that

S =
{
K ∈ Rnu×nyp | K(jω) ∈ S0 for almost all ω ∈ R

}

Given a constraint set, we define a complimentary set
S? ⊂ Rny×nup

S? =
{
G ∈ Rny×nusp |

S is quadratically invariant under G
}

Note that the elements of S? have dimensions which
are the transpose of the elements of S, and if S is a
frequency aligned subspace, then S? is also a frequency
aligned subspace.

Theorem 3. If S ⊂ Rnu×nyp is a subspace, S? is
quadratically invariant under K for all K ∈ S.

Proof. Suppose K1,K2 ∈ S and G ∈ S?. First note
that

K1GK2 +K2GK1 =

(K1 +K2)G(K1 +K2)−K1GK1 −K2GK2

and since all terms on the right hand side of this equa-
tion are in S, we have K1GK2 +K2GK1 ∈ S. Then we
have

2K2GK1GK2 =

(K2 +K1GK2 +K2GK1)G(K2 +K1GK2 +K2GK1)

−(K1GK2 +K2GK1)G(K1GK2 +K2GK1)−K2GK2

+(K1 −K2GK2)G(K1 −K2GK2)−K1GK1

and since all terms on the right hand side of this equa-
tion are in S, we have K2GK1GK2 ∈ S for all K1,K2 ∈
S and for all G ∈ S?. This implies GK1G ∈ S? for all
K1 ∈ S and for all G ∈ S?, and the desired result
follows.

This tells us that the complimentary set is quadrati-
cally invariant under any element of the constraint set,
which will be very useful in proving our main result.

2 Parameterization of All Stabilizing
Controllers

In this section, we review one well-known approach to
solution of the feedback optimization problem (1) when
the constraint that K lie in S is not present. In this
case, one may use the following standard change of vari-
ables. First define the map h : Rp ×Rp → Rp by

h(G,K) = −K(I −GK)−1

for all G,K such that I −GK is invertible

We will also make use of the notation hG(K) =

h(G,K). Given G ∈ Rny×nusp , the map hG is an in-

volution on Rnu×nyp , as stated in the following lemma.
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Lemma 4. For any G ∈ Rny×nusp , the map hG satisfies

image(hG) = Rnu×nyp , and hG : Rnu×nyp → Rnu×nyp is
a bijection, with hG ◦ hG = I.

Proof. A straightforward calculation shows that for
any K ∈ Rnu×nyp , hG(hG(K)) = K. It is then im-

mediate that image(hG) = Rnu×nyp and hG ◦ hG = I.

For a given system P , all controllers that stabilize
the system may be parameterized using the well-known
Youla parameterization [19]. This parameterization is
particularly simple to construct in the case where we
have a nominal stabilizing controller Knom ∈ RH∞;
that is, a controller that is both stable and stabilizing.

Theorem 5. Suppose G is strictly proper, and Knom ∈
Cstab∩RH∞. Then all stabilizing controllers are given
by

Cstab =
{
Knom − h

(
h(Knom, G), Q

) ∣∣ Q ∈ RH∞
}

and the set of all closed-loop maps achievable with sta-
bilizing controllers is

{
f(P,K)

∣∣ K ∈ Rp, K stabilizes P
}

=
{
T1 − T2QT3

∣∣ Q ∈ RH∞
}

(2)

where

T1 = P11 + P12Knom(I −GKnom)−1P21

T2 = −P12(I −KnomG)−1

T3 = (I −GKnom)−1P21

(3)

Proof. The proof is omitted due to space constraints.

This theorem tells us that if the plant is strongly
stabilizable, that is, if it can be stabilized by a stable
controller, then given such a controller, we can param-
eterize the set of all stabilizing controllers. See [20] for
a discussion of this, and [1] for an extension to nonlin-
ear control. The parameterization above is very useful,
since in the absence of the constraint K ∈ S, prob-
lem (1) can be reformulated as

minimize ‖T1 − T2QT3‖
subject to Q ∈ RH∞

(4)

The closed-loop map is now affine in Q, and its norm
is therefore a convex function of Q. This problem is
readily solvable by, for example, the techniques in [4].
After solving this problem to find Q, one may then
construct the optimal K for problem (1) via K =
Knom − h

(
h(Knom, G), Q

)
.

Parameterization of all stabilizing controllers for
decentralized control. We now wish to extend the
above result to parameterize all stabilizing controllers
K ∈ Rp that also satisfy the information constraint
K ∈ S. Applying the above change of variables to
problem (1), we arrive at the following optimization
problem.

minimize ‖T1 − T2QT3‖
subject to Q ∈ RH∞

Knom − h
(
h(Knom, G), Q

)
∈ S

(5)

However, the set

{
Q ∈ RH∞

∣∣ Knom − h
(
h(Knom, G), Q

)
∈ S

}

is not convex in general, and hence this problem is not
easily solved. In this paper, we develop general condi-
tions under which this set is convex.

2.1 Quadratically Invariant Constraints

We now restate a result from [12], which is the main
result of that paper applied to transfer functions.

Theorem 6. Suppose G ∈ Rsp and S ⊂ Rp, or G ∈
Rp and S ⊂ Rsp, and S is a frequency aligned subspace.
Then

S is quadratically invariant under G ⇐⇒ hG(S) = S

This will be fundamental in proving the results of
this paper. The results in this section give conditions
under which the set

{
Q ∈ RH∞

∣∣ Knom − h
(
h(Knom, G), Q

)
∈ S

}

is affine, and so the optimization problem (5) may be
solved via convex programming. In the remainder of
this section, we assume that S is a frequency aligned
subspace. First we state a preliminary lemma.

Lemma 7. Suppose G ∈ Rsp and Knom ∈ Cstab ∩
RH∞ ∩ S. If S is quadratically invariant under
h(Knom, G) then

Cstab∩S =
{
Knom−h

(
h(Knom, G), Q

) ∣∣ Q ∈ RH∞∩S
}

Proof. Suppose there exists Q ∈ RH∞ ∩ S such that

K = Knom − h
(
h(Knom, G), Q

)
.

Since S is quadratically invariant under h(Knom, G) and
S is a frequency aligned subspace, Theorem 6 implies
that h

(
h(Knom, G), Q

)
∈ S , and since Knom ∈ S as

well, K ∈ S. By Theorem 5, we also have K ∈ Cstab,
so K ∈ Cstab ∩ S.
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Now suppose K ∈ Cstab ∩ S. Let

Q = h
(
h(Knom, G),Knom −K

)
.

We know Knom −K ∈ S, and since S is quadratically
invariant under h(Knom, G), then by Theorem 6, we
also have Q ∈ S. Since h is involutive with respect
to its second argument, Q is the unique element in Rp
such that K = Knom − h

(
h(Knom, G), Q

)
, and since

K ∈ Cstab then by Theorem 5 we must have Q ∈ RH∞.

This lemma shows that if we can find a stable Knom ∈
S which is stabilizing, and if the condition that S is
quadratically invariant under h(Knom, G) holds, then
the set of all stabilizing admissible controllers can be
easily parameterized with the same change of variables
from Theorem 5. We now simplify this condition.

Main result. The following theorem is the main re-
sult of this paper. It states that if the constraint set
is quadratically invariant under the plant, and Q is de-
fined as above, then the information constraints on K
are equivalent to affine constraints on Q.

Theorem 8. Suppose G ∈ Rsp and Knom ∈ Cstab ∩
RH∞∩S. If S is quadratically invariant under G then

Cstab∩S =
{
Knom−h

(
h(Knom, G), Q

) ∣∣ Q ∈ RH∞∩S
}

Proof. If S is quadratically invariant under G, then
G ∈ S?. Further, by Theorem 3, S? is quadratically
invariant under Knom, and then by Theorem 6, we
have h(Knom, S

?) = S?. We then have h(Knom, G) ∈
S?, and therefore S is quadratically invariant under
h(Knom, G). By Lemma 7, this yields the desired re-
sult.

Remark 9. When P is stable, we can choose Knom = 0
and the result reduces to that analyzed in [12].

Remark 10. When S = Rnu×nyp , which corresponds to
centralized control, then the quadratic invariance con-
dition is met and the result reduces to Theorem 5.

2.2 Optimization Subject to Information Con-
straints

When the constraint set is quadratically invariant un-
der the plant, we have the following equivalent prob-
lems. Suppose G ∈ Rny×nusp and S ⊂ Rnu×nyp is a
frequency aligned subspace. Then K is optimal for the
problem

minimize ‖f(P,K)‖
subject to K stabilizing

K ∈ S
(6)

if and only if K = Knom − h
(
h(Knom, G), Q

)
and Q is

optimal for

minimize ‖T1 − T2QT3‖
subject to Q ∈ RH∞

Q ∈ S
(7)

where T1, T2, T3 ∈ RH∞ are given by equations (3).
This problem may be solved via convex programming.

3 Specific Constraint Classes

In this section we show how quadratic invariance can
be used for sparse and symmetric synthesis.

3.1 Sparsity Constraints

Many problems in decentralized control can be ex-
pressed in the form of problem (6), where S is the set of
controllers that satisfy a specified sparsity constraint.
In the previous section we showed that quadratic invari-
ance of the associated subspace allowed this problem to
be solved via convex optimization. In this section, we
provide a computational test for quadratic invariance
when the subspace S is defined by sparsity constraints.
First we need a little more notation.

Suppose Abin ∈ {0, 1}m×n is a binary matrix. We
define the subspace

Sparse(Abin) =
{
B ∈ Rm×np |

Bij(jω) = 0 for all i, j such that Abin
ij = 0

for almost all ω ∈ R
}

Also, if B ∈ Rm×nsp , let Abin = Pattern(B) be the
binary matrix given by

Abin
ij =

{
0 if Bij(jω) = 0 for almost all ω ∈ R
1 otherwise

3.1.1 Computational Test

The following provides a computational test for
quadratic invariance when S is defined by sparsity con-
straints.

Theorem 11. Suppose S = Sparse(Kbin) and Gbin =
Pattern(G) for some Kbin ∈ {0, 1}nu×ny and G ∈ Rsp.
Then the following are equivalent:

(i) S is quadratically invariant under G

(ii) K1GK2 ∈ S for all K1,K2 ∈ S

(iii) Kbin
ki Gbin

ij Kbin
jl (1−Kbin

kl ) = 0

for all i, l = 1, . . . , ny and j, k = 1, . . . , nu
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Proof. The proof is omitted due to space constraints.

This result shows us several things about sparsity
constraints. We see that quadratic invariance is equiv-
alent to another condition which is stronger in general.
When G is symmetric, for example, the subspace con-
sisting of symmetric K is quadratically invariant but
does not satisfy condition (ii). Condition (iii) shows
that quadratic invariance can be checked in time O(n4),
where n = max{nu, ny}. It also shows that, if S is de-
fined by sparsity constraints, then S is quadratically
invariant under G if and only if it is quadratically in-
variant under all systems with the same sparsity pat-
tern.

3.1.2 Example Sparsity Patterns

Skyline. A matrix A ∈ Rm×n is called a skyline
matrix if for all i = 2, . . . ,m and all j = 1, . . . , n,

Ai−1,j = 0 if Ai,j = 0

Examples include any of the binary matrices Kbin of
Section 4.

Suppose G ∈ Rsp is lower triangular and Kbin is
a lower triangular skyline matrix. Then

S = Sparse(Kbin)

is quadratically invariant under G.

Other structures. Many structures which arise in
practical contexts and which have been studied are in
fact quadratically invariant sparsity patterns. These
include nested structures, hierarchical structures, and
chains [15].

3.1.3 Sparse Synthesis

The following theorem shows that for sparsity con-
straints, the test in Section 3.1 can be used to identify
tractable decentralized control problems.

Theorem 12. Suppose G ∈ Rsp and Knom ∈ Cstab ∩
RH∞ ∩ S. Further suppose Gbin = Pattern(G) and
S = Sparse(Kbin) for some Kbin ∈ {0, 1}nu×ny . If

Kbin
ki Gbin

ij Kbin
jl (1−Kbin

kl ) = 0

for all i, l = 1, . . . , ny and j, k = 1, . . . , nu

then

Cstab∩S =
{
Knom−h

(
h(Knom, G), Q

)
| Q ∈ RH∞∩S

}

Proof. Follows immediately from Theorems 8 and 11.

3.2 Symmetric Synthesis

The following shows that when the plant is symmetric,
the methods of this paper could be used to find the
optimal symmetric stabilizing controller.

Theorem 13. Suppose

Hn =
{
A ∈ Cn×n

∣∣ A = A∗
}

and

S = {K ∈ Rp | K(jω) ∈ Hn for almost all ω ∈ R}.

Further suppose Knom ∈ Cstab∩RH∞∩S and G ∈ Rsp
with G(jω) ∈ Hn for almost all ω ∈ R. Then

Cstab∩S =
{
Knom−h

(
h(Knom, G), Q

)
| Q ∈ RH∞∩S

}

Proof. Follows immediately from Theorem 8.

4 Numerical Example

Consider an unstable lower triangular plant

G(s) =




1
s+1 0 0 0 0

1
s+1

1
s−1 0 0 0

1
s+1

1
s−1

1
s+1 0 0

1
s+1

1
s−1

1
s+1

1
s+1 0

1
s+1

1
s−1

1
s+1

1
s+1

1
s−1




with P given by

P11 =

[
G 0
0 0

]
P12 =

[
G
I

]
P21 = [G I]

and a sequence of sparsity constraints {Kbin
i }




0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 1



,




0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
1 1 0 0 1



,




0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
1 1 0 0 0
1 1 0 0 1



,




0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
1 1 0 0 0
1 1 1 0 1



,




0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
1 1 1 0 0
1 1 1 0 1



,




1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1




defining a sequence of information constraints

Si = Sparse(Kbin
i )

such that each subsequent constraint is less restrictive,
and such that each is quadratically invariant under G.
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A stable and stabilizing controller which lies in the sub-
space defined by any of these sparsity constraints is
given by

Knom =




0 0 0 0 0
0 −4

s+2 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 −4

s+2




We can then find T1, T2, T3 as in (3), and then find
the stabilizing controller which minimizes the closed-
loop norm subject to the sparsity constraints by solv-
ing problem (3), which is convex. Figure 2 shows the
resulting minimum H2 norms for the six sparsity con-
straints as well as for a centralized controller.

1 2 3 4 5 6 7
5

5.5

6

6.5

7

7.5

8

8.5

9

O
pt

im
al

 H
2 N

or
m

Information Constraint

Centralized 

Figure 2: Optimal Norm with Information Constraints

5 Conclusions

We have shown a simple condition, called quadratic
invariance, under which minimum-norm decentralized
control problems for unstable plants may be formulated
as convex optimization problems. For stable plants, it
was known that this condition caused the information
constraint to be invariant under feedback. We showed
how to extend that result to unstable systems by con-
structing a parameterization of all admissible stabiliz-
ing controllers, given any controller which is both sta-
ble and stabilizing. The optimal controller may then
be found with convex programming.
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