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Abstract

In this paper, we prove that a wide class of distributed
control problems subject to communication and prop-
agation delays are equivalent to convex optimization
problems. The results hold in both continuous and dis-
crete time, for both stable and unstable systems. A
specific example is formation flight, where each aircraft
has its own controller, and the effects of an aircraft’s
control actions propagate to neighboring aircraft with
a delay inversely proportional to the speed of sound.
Here each controller may transmit sensor measurements
from its aircraft to neighboring aircraft with an associ-
ated communication delay, and a consequence of these
results is that if the communication delay is less than
this propagation delay, then norm-optimal controllers
may be found via convex programming.

1 Introduction

In this paper, we prove that a wide class of distributed
control problems subject to communication and prop-
agation delays are equivalent to convex optimization
problems. The results hold in both continuous and dis-
crete time, for both stable and unstable systems. A
specific example is formation flight, where each aircraft
has its own controller, and the effects of an aircraft’s
control actions propagate to neighboring aircraft with
a delay inversely proportional to the speed of sound.
Here each controller may transmit sensor measurements
from its aircraft to neighboring aircraft with an associ-
ated communication delay, and a consequence of these
results is that if the communication delay is less than
this propagation delay, then norm-optimal controllers
may be found via convex programming.

In controller optimization problems, decentralization
manifests itself as delay or sparsity constraints on the
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controller parameters. There is no known computa-
tionally tractable method for finding the optimal con-
troller subject to general constraints of this form, and
in certain cases the problem has been proven to be in-
tractable. We show that an important class of such
problems is amenable to convex optimization, and hence
solvable using standard algorithms.

1.1 Prior Work

It was shown in [8] that a property called quadratic in-
variance is necessary and sufficient for the constraint set
to be preserved under feedback. In the case where the
plant is stable, this allows the constrained minimum-
norm control problem to be reduced to a convex opti-
mization problem. In [9] it was shown that quadratic
invariance is also sufficient when the plant is unstable.
The tractable structures of [2, 5, 6, 7, 13, 14, 16] can
all be shown to satisfy this property. In the case of
distributed control with delays, quadratic invariance re-
duces to simply requiring that the transmission delay be
less than the propagation delay. This is a very reason-
able assumption, and this type of example represents
one of the most promising applications of quadratic in-
variance.

The convexity of minimum-norm control problems,
subject to quadratically invariant constraints, was first
shown in the context of the plant and controllers be-
ing bounded linear operators, and the main result was
subject to technical conditions. The result was later
extended to the control of unstable systems, free from
these technical conditions, provided that the constraints
were frequency-aligned, meaning that the same con-
straints are imposed at each frequency. This frame-
work is ideal for enforcing sparsity constraints. While
these results are easily extended to enforce different con-
straints at each frequency, that is still insufficient to im-
pose delay constraints. Even if the plant is stable and
viewed as a bounded linear operator, there is also no
guarantee that the constraints we need to impose will
satisfy the technical conditions of the original result.

In this paper, we first present an example where a vi-
olation of these technical conditions causes the desired
result to fail. Thus we elucidate that these conditions
are actually necessary in general, rather than for conve-
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nience of proof. We then show that by restricting our fo-
cus to causal operators, approaching the problem from
a different framework, namely extended linear spaces,
and defining appropriate topologies, that we can prove
a similar result free from technical conditions. We thus
provide the first complete proof that synthesis of the
minimum-norm controller for a distributed system with
delays is a convex optimization problem if the transmis-
sion delay is less than the propagation delay.

1.2 Preliminaries

Given topological vector spaces X ,Y, let L(X ,Y) de-
note the set of all maps T : X → Y such that T is linear
and continuous. Note that if X ,Y are normed spaces, as
in Theorem 5, then all such T are bounded, but that T
may be unbounded in general. We abbreviate L(X ,X )
with L(X ).

Suppose P ∈ L(W ×U ,Z × Y). Partition P as

P =

[
P11 P12

P21 P22

]

so that P11 : W → Z, P12 : U → Z, P21 : W → Y and
P22 : U → Y. Suppose K ∈ L(Y,U). If I − P22K is
invertible, define f(P,K) ∈ L(W,Z) by

f(P,K) = P11 + P12K(I − P22K)−1P21

The map f(P,K) is called the (lower) linear frac-
tional transformation (LFT) of P and K; we will
also refer to this as the closed-loop map. In the re-
mainder of the paper, we abbreviate our notation and
define G = P22.

Denote by Rm×np the set of matrix-valued real-
rational proper transfer matrices and let Rm×nsp be the
set of matrix-valued real-rational strictly proper trans-
fer matrices. We denote by Cstab ⊆ Rnu×nyp the set of

controllers K ∈ Rnu×nyp which stabilize P .

Banach spaces. When U ,Y are Banach spaces, we
also use the following notation.

Given G ∈ L(U ,Y), we define the set M ⊆ L(Y,U)
of controllers K such that f(P,K) is well-defined by

M =
{
K ∈ L(Y,U)

∣∣ (I −GK) is invertible
}

For any Banach space X and bounded linear operator
A ∈ L(X ) define the resolvent set ρ(A) by ρ(A) =
{λ ∈ C | (λI−A) is invertible} and the resolvent RA :
ρ(A)→ L(X ) by RA(λ) = (λI −A)−1 for all λ ∈ ρ(A).
We also define ρuc(A) to be the unbounded connected
component of ρ(A).

Note that 1 ∈ ρ(GK) for all K ∈ M , and define the
subset N ⊆M by

N =
{
K ∈ L(Y,U)

∣∣ 1 ∈ ρuc(GK)
}

Topology. Let X be a vector space and {‖·‖α |α ∈ I}
be a family of semi-norms on X . The family is called
sufficient if for all x ∈ X such that x 6= 0 there exists
α ∈ I such that ‖x‖α 6= 0. The topology generated by
all open ‖·‖α-balls is called the topology generated by
the family of semi-norms. If the family is sufficient, con-
vergence in this topology is equivalent to convergence
in every semi-norm, and continuity of a linear operator
is equivalent to continuity in every semi-norm. See, for
example, [19, 11].

Extended spaces. We introduce some new notation
for extended linear spaces. These spaces are utilized
extensively in [4, 15].

We define the truncation operator PT for all T ∈ R+

on all functions f : R+ → R such that fT = PT f is
given by

fT (t) =

{
f(t) if t ≤ T
0 if t > T

and hereafter abbreviate PT f as fT . We make use of
the standard Lp Banach spaces equipped with the usual
p-norm, and the extended spaces

Lpe = {f : R+ → R | fT ∈ Lp for all T ∈ R+}
for all p ≥ 1

We let the topology on L2e be generated by the suf-
ficient family of semi-norms {‖·‖T | T ∈ R+} where
‖f‖T = ‖PT f‖L2

, and let the topology on L(Lm2e, L
n
2e)

be generated by the sufficient family of semi-norms
{‖·‖T | T ∈ R+} where ‖A‖T = ‖PTA‖Lm2 →Ln2

We use similar notation for discrete time. As is stan-
dard, we extend the discrete-time Banach spaces `p to
the extended space

`e = {f : Z+ → R | fT ∈ `∞ for all T ∈ Z+}

Note that in discrete time, all extended spaces contain
the same elements, since the common requirement is
that the sequence is finite at any finite index. This
motivates the abbreviated notation of `e.

We let the topology on `e be generated by the suf-
ficient family of semi-norms {‖·‖T | T ∈ Z+} where
‖f‖T = ‖PT f‖`2 , and let the topology on L(`me , `

n
e )

be generated by the sufficient family of semi-norms
{‖·‖T | T ∈ Z+} where ‖A‖T = ‖PTA‖`m2 →`n2 .

When the dimensions are implied by context, we omit
the superscripts ofRm×np ,Rm×nsp ,RHm×n∞ , Lm×npe , `m×ne .
We will indicate the restriction of an operator A to
L2[0, T ] or 0, . . . , T by A|T , and the restriction and trun-
cation of an operator as AT = PTA|T . Thus for every
semi-norm in this paper, one may write ‖A‖T = ‖AT ‖.
Given a set S, we also denote ST = {PTA|T ; A ∈ S}.
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2 Problem Formulation

Suppose S is a subspace of the vector space of con-
trollers under consideration. An example would be
S ⊆ Rnu×nyp , although in this paper we will also con-
sider other possible spaces of admissible controllers.
Given P we would like to solve the following problem

minimize ‖f(P,K)‖
subject to K stabilizes P

K ∈ S
(1)

Here ‖·‖ is any norm chosen to encapsulate the control
performance objectives, and S is a subspace of admis-
sible controllers which encapsulates the decentralized
nature of the system. Many decentralized control prob-
lems may be posed in this form. We call the subspace
S the information constraint .

This problem is made substantially more difficult in
general by the constraint that K lie in the subspace S.
Without this constraint, the problem may be solved by
a simple change of variables, as discussed below. Note
that the cost function ‖f(P,K)‖ is in general a non-
convex function of K. No computationally tractable
approach is known for solving this problem for arbi-
trary P and S.

DpDp

DpDp

G2 G3G1

DcDcDc

Dt Dt

Dt Dt

Dt Dt

K1 K2 K3

Figure 1: Optimal Norm with Delay Constraints

2.1 Motivating Example

The main motivating mathematical problem for this pa-
per is illustrated in Figure 1. In this problem, we have
n linear time-invariant causal subsystems {G1, . . . , Gn},
each with its respective controller Ki, arranged so that
subsystem i receives signals from controller i after a
computational delay of c, controller i receives measure-
ments from subsystem j with a transmission delay of
t|i− j|, and subsystem i receives signals from subsys-
tem j after a propagation delay p|i− j|.

This problem can be written in the form of (1), where
S is defined as follows. Let Dτ represent a delay oper-

ator of time τ . Then K ∈ S if and only if

K =




DcH11 Dt+cH12 D2t+cH13

Dt+cH21 DcH22 Dt+cH23

D2t+cH31 Dt+cH32 DcH33




for some linear time-invariant maps Hij .

It was observed in [8] that the above constraint set S
is quadratically invariant if

t ≤ p+
c

(n− 1)
.

In the absence of computational delay, this condition re-
duces to simply requiring the transmission delay to be
less than or equal to the propagation delay. This prop-
erty holds for the formation flight example when the
controllers can transmit their information faster than
the speed of sound. In the presence of computational
delay, we see that the condition is surprisingly relaxed.
In this paper we provide proof that this problem, along
with a wide class of others, may be solved with convex
optimization.

2.2 Parameterization of All Stabilizing Con-
trollers

In this section, we review one well-known approach to
solution of the feedback optimization problem (1) when
the constraint thatK lie in S is not present. In this case,
one may use the following standard change of variables.
First define the map h as

h(G,K) = −K(I −GK)−1

for all G,K such that I −GK is invertible

We will also make use of the notation hG(K) = h(G,K).
Given G, the map hG is an involution on M , as shown
in [8].

For a given system P , all controllers that stabilize
the system may be parameterized using the well-known
Youla parameterization [17]. This parameterization is
particularly simple to construct in the case where we
have a nominal stabilizing controller Knom ∈ RH∞;
that is, a controller that is both stable and stabilizing.

Theorem 1. Suppose G is strictly proper, and Knom ∈
Cstab ∩RH∞. Then all stabilizing controllers are given
by

Cstab =
{
Knom − h

(
h(Knom, G), Q

) ∣∣ Q ∈ RH∞
}

and the set of all closed-loop maps achievable with sta-
bilizing controllers is

{
f(P,K)

∣∣ K ∈ Rp, K stabilizes P
}

=
{
T1 − T2QT3

∣∣ Q ∈ RH∞
}

(2)
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where

T1 = P11 + P12Knom(I −GKnom)−1P21

T2 = −P12(I −KnomG)−1

T3 = (I −GKnom)−1P21

(3)

Proof. The proof is omitted due to space constraints.

This theorem tells us that if the plant is strongly sta-
bilizable, that is, if it can be stabilized by a stable con-
troller, then given such a controller, we can parameter-
ize the set of all stabilizing controllers. See [18] for a
discussion of this, [1] for an extension to nonlinear con-
trol, and [9] for an extension to decentralized control
with sparsity constraints. The parameterization above
is very useful, since in the absence of the constraint
K ∈ S, problem (1) can be reformulated as

minimize ‖T1 − T2QT3‖
subject to Q ∈ RH∞

(4)

The closed-loop map is now affine in Q, and its norm
is therefore a convex function of Q. This problem is
readily solvable by, for example, the techniques in [3].
After solving this problem to find Q, one may then
construct the optimal K for problem (1) via K =
Knom − h

(
h(Knom, G), Q

)
.

Parameterization of all stabilizing controllers for
decentralized control. We now wish to extend the
above result to parameterize all stabilizing controllers
K ∈ Rp that also satisfy the information constraint
K ∈ S. Applying the above change of variables to prob-
lem (1), we arrive at the following optimization prob-
lem.

minimize ‖T1 − T2QT3‖
subject to Q ∈ RH∞

Knom − h
(
h(Knom, G), Q

)
∈ S

(5)

However, the set
{
Q ∈ RH∞

∣∣ Knom − h
(
h(Knom, G), Q

)
∈ S

}

is not convex in general, and hence this problem is not
easily solved. In this paper, we develop general condi-
tions under which this set is convex.

2.3 Quadratic Invariance

There is no known tractable solution to the general
problem (1) when S is an arbitrary subspace. How-
ever, the recent results of [8, 9] provide conditions un-
der which the problem may be solved. These results
say that, if the information constraint S is quadratically
invariant, then problem (1) may be solved via convex
optimization. We now state formally this property.

Definition 2. The set S is called quadratically in-
variant under G if

KGK ∈ S for all K ∈ S

The following lemmas are proven in [8].

Lemma 3. Suppose G ∈ L(U ,Y), and S ⊆ L(Y,U)
is a subspace. If S is quadratically invariant under G,
then

K(GK)n ∈ S for all K ∈ S, n ∈ Z+

Lemma 4. Suppose U ,Y are Banach spaces, G ∈
L(U ,Y), S ⊆ L(Y,U), and S is not quadratically in-
variant under G. Then there exists K ∈ S such that
(I −GK) is invertible and K(I −GK)−1 /∈ S.

The following is the main result of [8]. It states
that given G, if we have any constraint set S which is
quadratically invariant, then subject to technical condi-
tions, the information constraints on K are equivalent
to affine constraints on the map h(K).

Theorem 5. Suppose G ∈ L(U ,Y), and S ⊆ L(Y,U)
is a closed subspace. Further suppose N ∩ S = M ∩ S.
Then

S is quadratically invariant under G

⇐⇒ h(S ∩M) = S ∩M

2.4 Connectedness of the Resolvent Set

The technical conditions of Theorem 5 are automati-
cally satisfied when the Banach spaces U and Y are fi-
nite dimensional, hence this result is directly applicable
to controller synthesis subject to sparsity constraints [9].
However, these assumptions prevent immediate appli-
cation to systems with delays. Further, the following
example shows that these technical conditions are nec-
essary in general. Let

`2 =

{
(. . . , x−1, x0, x1, . . .) ; xi ∈ R,

∞∑

i=−∞
x2
i <∞

}
.

Define `+2 = {x ∈ `2 ; xi = 0 for all i < 0} . and define
the delay operator D : `2 → `2 as D(x)i = xi−1. Let
Y = U = `2, let the plant be the identity G = I, and
let S be the subspace of causal controllers

S =
{
K ∈ L(`2) ; K(y) ∈ `+2 for all y ∈ `+2

}

such that S is clearly quadratically invariant under G.
Now consider K = 2D ∈ S; we have

(I −GK)−1 = −1

2
D−1

(
I − 1

2
D−1

)−1

= −
∞∑

k=1

1

2k
D−k
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and so K ∈M . Also note that

ρ(GK) = {λ ∈ C ; |λ| 6= 2}

and hence ρuc(GK) = {λ ∈ C ; |λ| > 2}, which implies
that K /∈ N . Finally,

K(I −GK)−1 = −
∞∑

k=0

1

2k
D−k /∈ S

So we have G ∈ L(U ,Y), S ⊆ L(Y,U) is a closed sub-
space, and S is quadratically invariant under G, but
N ∩S 6= M ∩S. We have then found a K ∈ S∩M such
that h(K) /∈ S, and so h(S ∩M) 6= S ∩M .

This elucidates the fact that the above technical con-
ditions cannot be completely eradicated, and motivates
us to find a different framework under which a similar
result can be achieved without them. In the remain-
der of the paper, we achieve this by focusing on causal
operators.

3 Invariance Under Feedback

3.1 Causal Operators

We would like to develop more general conditions under
which the closed-loop system K(I −GK)−1 lies in the
information subspace S. In this section, we show that
by focusing on causal operators, we can both extend
our main results to unbounded operators and eliminate
technical conditions from our assumptions.

3.1.1 Convergence of Neumann Series

To do this, we first analyze convergence of the Neumann
series

(I −W )−1 =
∞∑

n=0

Wn

when W is a general causal linear operator on extended
spaces. In particular, we need to define much more
general conditions for convergence of the Neumann se-
ries than the well-known small gain theorem. Note that
while most of the results in paper have analogs in both
continuous-time and discrete-time, the proofs in these
cases are different. We first analyze the continuous-
time case, and begin by providing a preliminary lemma
relating the convergence of impulse responses with the
convergence of their associated operators.

Lemma 6. Suppose Wn ∈ L(Lm2e) is causal and time-
invariant for all n ∈ Z+, w(n) ∈ L∞e is the impulse
response of Wn, a ∈ L∞e ⊆ L1e and (w(n))T converges
uniformly to aT for all T ∈ R+. Then Wn converges to
A ∈ L(Lm2e), where A is given by Au = a ∗ u.

Proof. Given u ∈ Lm2e and T ∈ R+,

(a ∗ u)T = (aT ∗ uT )T

since a(t) = 0 and u(t) = 0 for t < 0. Hence (a ∗ u)T ∈
L2, since aT ∈ L1 and uT ∈ L2, by Theorem 65 of [12].
Therefore, we can define A ∈ L(Lm2e) by Au = a ∗ u.

For any n ∈ Z+ and any T ∈ R+,

‖A−Wn‖2T = sup
u∈L2,‖u‖2=1

‖PTAu− PTWnu‖22

≤ sup
u∈L2,‖u‖2=1

∥∥∥
(
aT − (w(n))T

)
∗ u
∥∥∥

2

2

≤ sup
u∈L2,‖u‖2=1

m∑

i=1

m∑

j=1

∥∥∥
(
aT − (w(n))T

)
ij

∥∥∥
2

1
‖uj‖22

and hence

‖A−Wn‖2T ≤
m∑

i=1

m∑

j=1

∥∥∥
(
aT − (w(n))T

)
ij

∥∥∥
2

1

Since the sum converges uniformly to aT , for any ε > 0
we can choose N such that for all n ≥ N and for all

i, j = 1, . . . ,m,
∣∣∣(aij)T (t)−∑n

k=1(w
(k)
ij )T (t)

∣∣∣ < ε
mT for

all t ∈ [0, T ] and thus ‖A−Wn‖T < ε. So Wn converges
to A in L(Lm2e).

We can now prove convergence of the Neumann series
under the given conditions by showing the convergence
of impulse responses. The method for showing this is
similar to that used for spatio-temporal systems in the
appendix of [2].

Theorem 7. Suppose W ∈ L(Lm2e) is causal and time-
invariant with impulse response matrix w such that w ∈
L∞e. Then

∑∞
n=0W

n converges to an element B ∈
L(Lm2e) such that B = (I −W )−1.

Proof. Let q(T ) = supt∈[0,T ]‖w(t)‖ < ∞ for all

T ∈ R+, and let w(n) be the impulse response matrix of

Wn. First we claim that ‖w(n)(T )‖ ≤ Tn−1

(n−1)! q(T )n for

all integers n ≥ 1. This is true immediately for n = 1.
For the inductive step,

∥∥w(n+1)(T )
∥∥ =

∥∥∥∥
∫ T

t=0

w(T − t)w(n)(t)dt

∥∥∥∥

≤
∫ T

t=0

‖w(T − t)‖ · ‖w(n)(t)‖dt

≤ q(T )

∫ T

t=0

‖w(n)(t)‖dt

≤ q(T )

∫ T

t=0

tn−1

(n− 1)!
q(t)ndt

≤ Tn

n!
q(T )n+1

5
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Then |w(n)
ij (t)| ≤ Tn−1

(n−1)! q(T )n for all t ∈ [0, T ],for all

n ≥ 1, and for all i, j = 1, . . . ,m.
∑∞
n=1

Tn−1

(n−1)! q(T )n

converges to q(T )eTq(T ), so by the Weierstrass M-test,∑∞
n=1

(
w

(n)
ij

)
T

converges uniformly and absolutely for
all i, j = 1, . . . ,m.

Let a =
∑∞
n=1 w

(n). Then aij ∈ L∞e ⊆ L1e for all
i, j = 1, . . . ,m, and we can define A,B ∈ L(Lm2e) by
Au = a ∗ u and B = I +A.

Then by Lemma 6,
∑n
k=1W

k converges to A in
L(Lm2e), and thus

∑n
k=0W

k converges to B in L(Lm2e).

Lastly,

B(I −W ) = (I −W )B =

∞∑

n=0

Wn −
∞∑

n=1

Wn = I

A simple example of the utility of this result is as
follows. Consider W represented by the transfer func-
tion 2

s+1 . Then I −W = s−1
s+1 is not invertible in L(L2).

However using the above theorem, the inverse in L(L2e)
is given by

∑∞
n=0( 2

s+1 )n = s+1
s−1 .

We now move on to analyze the discrete-time case.
Let rad(·) denote spectral radius.

Theorem 8. Suppose W ∈ L(`me ) is causal and time-
invariant with impulse response matrix w such that w ∈
`e and rad(w(0)) < 1. Then

∑∞
n=0W

n converges to an
element B ∈ L(`me ) such that B = (I −W )−1.

Proof. We may represent PTW |T with the block lower
triangular Toeplitz matrix

WT =




w(0)

w(1)
. . .

...
w(T ) · · · w(0)




Since w ∈ `e, WT ∈ RmT×mT . Then, rad(WT ) =
rad(w(0)) < 1, which implies that

∑∞
n=0(WT )n con-

verges in RmT×mT . Thus we can define B ∈ L(`me ) by
(Bu)T = (

∑∞
n=0(WT )n)uT for any u ∈ `me and any T ∈

Z+. It is then immediate that
∥∥∥B −

∑∞
n=0W

n
∥∥∥
T
→ 0

for all T , and thus
∑∞
n=0W

n converges to B in L(`me ).

Lastly,

B(I −W ) = (I −W )B =
∞∑

n=0

Wn −
∞∑

n=1

Wn = I

Note that while the conditions of Theorem 8 are nec-
essary for convergence as well as sufficient, the condi-
tions of Theorem 7 are not.

In particular, the above results imply the following
corollaries, which show convergence of the Neumann se-
ries for strictly proper systems, possibly with delay.

Corollary 9. Suppose W ∈ L(Lm2e) is given by Wij =
DτijGij where τij ≥ 0 and Gij ∈ Rsp. Then

∑∞
n=0W

n

converges to an element B ∈ L(Lm2e) such that B =
(I −W )−1.

Corollary 10. Suppose W ∈ L(`me ) is given by Wij ∈
Rsp. Then

∑∞
n=0W

n converges to an element B ∈
L(`me ) such that B = (I −W )−1.

4 Main Results

This subsection contains the main technical results of
this paper. In particular, we show that for a broad class
of systems, quadratic invariance allows convex synthe-
sis for decentralized control. Specifically, we do not re-
quire a constraint on the resolvent set of a bounded
operator, nor a structure constraint on the information
subspace S.

We first state a lemma which will help with the con-
verse of our main result.

Lemma 11. Suppose S ⊆ L(Lm2e, L
n
2e) or S ⊆

L(`me , `
n
e ), and C /∈ S. Then there exists T such that

CT /∈ ST .

Proof. Suppose not. Then for every positive T , CT ∈
ST . Thus for every T , there exists K ∈ S such that
PTC|T = PTK|T , or ‖C −K‖T = 0. Since ‖A‖T = 0
only if ‖A‖τ = 0 for all τ ≤ T , it follows that there exists
K ∈ S such that ‖C −K‖T = 0 for all T . But then
C −K = 0, and so C ∈ S and we have a contradiction.

Definition 12. We say that S ⊆ L(Lnu2e , L
ny
2e ) is inert

if for all K ∈ S, (gk)ij ∈ L∞e for all i, j = 1, . . . ,m
where (gk) is the impulse response matrix of GK. We
overload our notation and also call S ⊆ L(`nue , `

ny
e ) an

inert subspace if for all K ∈ S, (gk)ij ∈ `e for all i, j =
1, . . . ,m and rad((gk)(0)) < 1 where (gk) is the discrete
impulse response matrix of GK.

Theorem 13. Suppose G ∈ L(Lnu2e , L
ny
2e ) or G ∈

L(`nue , `
ny
e ), and S is an inert closed subspace. Then

S is quadratically invariant under G ⇐⇒ hG(S) = S

Proof. ( =⇒ ) Suppose K ∈ S. We first show that
hG(K) ∈ S.

K(I −GK)−1 = K

∞∑

n=0

(GK)n =

∞∑

n=0

K(GK)n

where the first equality follows from Theorems 7 and 8
and the second follows from the continuity of K.

By Lemma 3 we have K(GK)n ∈ S for all n ∈ Z+,
and hence K(I − GK)−1 ∈ S since S is a closed sub-
space.

6



2004.03.05.09 edited

So K ∈ S =⇒ hG(K) ∈ S. Thus hG(S) ⊆ S, and
since hG is involutive it follows that hG(S) = S, which
was the desired result.

( ⇐= ) We now turn to the converse of this result.
Suppose that S is not quadratically invariant under G.
Then there exists K ∈ S such that KGK /∈ S, and
thus by Lemma 11, there exists a finite T such that
PTKGK|T /∈ ST . Since K and G are causal, we then
have

KTGTKT /∈ ST where

KT = PTKPT ∈ ST and GT = PTGPT

and thus ST is not quadratically invariant under GT .
Then by Lemma 4 there exists K̃ ∈ ST such that

K̃(I −GT K̃)−1 =

∞∑

n=0

K̃(GT K̃)n /∈ ST

By definition of ST , there exists K0 ∈ S such that K̃ =
PTK0|T . Then by causality of K0 and G,

PT

( ∞∑

n=0

K0(GK0)n
)∣∣∣∣

T

/∈ ST

and thus hG(K0) = −∑∞n=0K0(GK0)n /∈ S.

The following theorem states that if the constraint
set is quadratically invariant under the plant, and Q
is defined as above, then the information constraints
on K are equivalent to affine constraints on Q. Here
Knom is a stable stabilizing controller that satisfies the
information constraints, i.e., Knom ∈ S.

Theorem 14. Suppose G ∈ Rsp and Knom ∈ Cstab ∩
RH∞ ∩S. If S is quadratically invariant under G then

Cstab∩S =
{
Knom−h

(
h(Knom, G), Q

) ∣∣ Q ∈ RH∞∩S
}

Proof. The full proof is omitted due to space con-
straints. Given G ∈ Rsp, S ⊆ Rp is inert, and then
once given hG(S) = S from Theorem 13, the rest of
the proof follows that of Theorem 8 in [9] once given
hG(S) = S from Theorem 6.

Equivalent convex problem. When the constraint
set is quadratically invariant under the plant, we now
have the following equivalent problem. Suppose G ∈
Rny×nusp and S ⊆ Rnu×nyp is a closed subspace. Then K
is optimal for problem (1) if and only if K = Knom −
h
(
h(Knom, G), Q

)
and Q is optimal for

minimize ‖T1 − T2QT3‖
subject to Q ∈ RH∞

Q ∈ S
(6)

where T1, T2, T3 ∈ RH∞ are given by equations (3).
This problem may be solved via convex programming.

5 Distributed Control With Delays

We now consider the distributed control problem dis-
cussed in Section 2.1. Suppose there are n subsystems
with transmission delay t ≥ 0, propagation delay p ≥ 0
and computational delay c ≥ 0. When expressed in
linear-fractional form, we define the allowable set of con-
trollers is as follows. Let K ∈ S if and only if

K =




DcH11 Dt+cH12 . . . D(n−1)t+cH1n

Dt+cH21 DcH22 . . . D(n−2)t+cH2n

...
...

D(n−1)t+cHn1 . . . DcHnn




for some Hij ∈ Rp of appropriate spatial dimensions.
The corresponding system G is given by

G =




A11 DpA12 . . . D(n−1)pA1n

DpA21 A22 . . . D(n−2)pA2n

...
...

D(n−1)pAn1 . . . Ann




for some Aij ∈ Rsp.
We define Delay(·) to give the delay associated with

a causal operator

Delay(W ) = arg inf
τ>0

w(τ) 6= 0

where w is the impulse response of W

Theorem 15. Suppose that G and S are defined as
above, and Knom ∈ Cstab ∩RH∞ ∩ S. Then if

t ≤ p+
c

(n− 1)

we have

Cstab∩S =
{
Knom−h

(
h(Knom, G), Q

) ∣∣ Q ∈ RH∞∩S
}
.

Proof. Given K ∈ S,

KGK ∈ S ⇐⇒ Delay
(
(KGK)kl

)
≥ c+t|k − l| for all k, l

We now seek conditions which cause this to hold.

(KGK)kl =
∑

i

∑

j

KklGijKjl

and so, assuming w.l.o.g. that k ≤ l,
Delay

(
(KGK)kl

)

≥ min
i,j
{Delay(Kkl) + Delay(Gij) + Delay(Kjl)}

≥ min
i,j
{2c+ t(|k − i|+ |j − l|) + p|i− j|}

= min
k≤i,j≤l

{2c+ t(|k − i|+ |j − l|) + p|i− j|}

= min
k≤i,j≤l

{2c+ t(|k − l| − |i− j|) + p|i− j|}

= 2c+ t|k − l|+ min
k≤i,j≤l

{(p− t)|i− j|}

= 2c+ min{t, p}|k − l|
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So the condition for quadratic invariance is

2c+ min{t, p}|k − l| ≥ c+ t|k − l| for all k, l.

This is equivalent to c − (t − min{t, p})(n − 1) ≥ 0,
which is equivalent to t ≤ p + c/(n − 1). So when this
inequality holds, S is quadratically invariant under G,
and the desired result follows from Theorem 14.

Thus we see that finding the minimum-norm con-
troller may be reduced to the convex optimization prob-
lem (6) when the controllers can transmit information
faster than the dynamics propagate. We also see that
the presence of computational delay causes this condi-
tion to be relaxed. In the case where the penalty of in-
terest is the H2-norm, the explicit computational meth-
ods delineated in [10] for synthesizing the optimal con-
troller subject to quadratically invariant sparsity con-
straints are easily extended to delay constraints.

6 Conclusions

We have developed a new framework for the analysis
and synthesis of minimum-norm decentralized control
problems, with causality as the only main assumption.
We showed that in this new framework, synthesis of
the minimum-norm controller subject to quadratically
invariant information constraints may be reduced to a
convex optimization problem. This result holds for sta-
ble and unstable systems, for continuous and discrete-
time, and is free from the strictures of extra condi-
tions which existed when analyzed in more conventional
frameworks. This enables a complete proof of convexity
for an important pragmatic example, as we showed that
optimal controllers for distributed systems with delays
may be synthesized in this manner when the communi-
cation delay is less than the propagation delay.
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