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Abstract

In 1968, Witsenhausen introduced his celebrated

counterexample, which illustrated that when an in-

formation pattern is nonclassical, the controllers

which optimize an expected quadratic cost may be

nonlinear. It is shown here that for the Witsen-

hausen Counterexample, when one instead consid-

ers the induced norm, then linear controllers are in

fact optimal.

1 Introduction

A classical information pattern assumes that, at every
time step, the controller can access not only informa-
tion from that time, but from all preceding times as
well. When this holds, and when the dynamics are lin-
ear, the cost quadratic, and the noise Gaussian, optimal
controllers are linear.

The Witsenhausen Counterexample [6] showed that
when a nonclassical information pattern exists, then
nonlinear controllers may be optimal for the LQG
norm.

In this paper, we will consider the same problem
setup, but for the optimum of the norm induced by the
2-norm, sometimes called uniformly optimal control.

In the case of the L1−norm, which is induced by a
different norm, it was shown that [1] linear controllers
are optimal over those which are differentiable in the
origin, by a simple argument which would extend to
most induced norms including ours. However, it was
also shown that when one drops this differentiability
assumption, and can optimize the controller for each
possible direction of the input noise, then such a nonlin-
ear controller may outperform all linear controllers [5],
even for a centralized information pattern.

In the case of uniformly optimal control, it has been
shown that linear controllers are optimal for the cen-

1Research School of Information Sciences and Engineering, The
Australian National University, Canberra, Australia, (e-mail:
rotkowitz@stanfordalumni.org)

2This work was primarily completed at the Royal Institute
of Technology, Stockholm, Sweden, where it was supported
by the European Commission through the Integrated Project
RUNES and by the Swedish Strategic Research Foundation
through an INGVAR grant.

tralized case [2, 3], just as in LQG control. This pa-
per shows that linear controllers are uniformly optimal
as well for a problem with a nonclassical information
pattern, and in particular, for the same problem which
elucidated the possibility of nonlinear optimality for the
LQG problem.

2 Preliminaries

We introduce the problem setup, several basic defini-
tions which will be used throughout the paper, and
their immediate consequences.

2.1 Problem Formulation

Given noise

w =

[

w1

w2

]

and control laws

u1 = γ1(y1) u2 = γ2(y2)

the system then evolves as follows, as indicated in
Figure 1

x0 = σw1 v = w2

y1 = x0 y2 = x1 + v

u1 = γ1(y1) u2 = γ2(y2)

x1 = x0 + u1 x2 = x1 − u2

and we wish to keep the following variables small

z1 =
√

ku1

z2 = x2

We can then put all of this together to obtain

z =

[ √
k γ1(σw1)

σw1 + γ1(σw1) − γ2(σw1 + γ1(σw1) + w2)

]

In the original problem [6], the noise was normally dis-
tributed

w ∼ N (0, I)

and we seeked γ1, γ2 to minimize

E ‖z‖2
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Figure 1: The Witsenhausen Counterexample

In this paper, we instead consider the induced norm,
and seek γ1, γ2 to minimize

sup
w 6=0

‖z‖2

‖w‖2

In order for the 2-norm to be consistent with Witsen-
hausen’s objective function, the weighting on u1 needs
to be

√
k. Note when considering the references, how-

ever, that some, such as [4], use a weighting of k.

2.2 Polar Coordinates

We will consider polar coordinates

w1 = r cos θ

w2 = r sin θ

such that the signals passed to the controllers become

y1 = σr cos θ

y2 = σr cos θ + γ1(σr cos θ) + r sin θ

The gain for given control laws and a given input can
be defined as

Q2(γ1, γ2, r, θ) =
‖z‖2

2

‖w‖2
2

=

(√
k γ1(σr cos θ)

r

)2

+

(

σ cos θ +
γ1(σr cos θ)

r

−γ2(σr cos θ + γ1(σr cos θ) + r sin θ)

r

)2

We then define the cost for given control laws as

J(γ1, γ2) = sup
r>0

sup
θ

Q(γ1, γ2, r, θ)

and the optimal cost as

J∗ = inf
γ1

inf
γ2

J(γ1, γ2)

Unless we state otherwise, a sup over θ is assumed to
be over |θ| ≤ π.

We state a fairly obvious lemma and omit the proof.

Lemma 1. J(γ1, γ2) is finite only if γ1(0) = γ2(0) = 0.

2.3 Definition of Piecewise Affine Control

Laws

For any a−, a+, b−, b+ ∈ R, we define piecewise affine
control laws

γ1(y1) =

{

a−y1 if y1 ≤ 0

a+y1 if y1 ≥ 0

γ2(y2) =

{

b−y2 if y2 ≤ 0

b+y2 if y2 ≥ 0

If we let

a(θ) =

{

a− if y1 < 0

a+ if y1 ≥ 0
b(θ) =

{

b− if y2 < 0

b+ if y2 ≥ 0

such that

γ1(y1(r, θ)) = a(θ)y1(r, θ)

γ2(y2(r, θ)) = b(θ)y2(r, θ)
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input can then be defined as

Q2
pa(a−, a+, b−, b+, r, θ)

=

(√
k a(θ)(σr cos θ)

r

)2

+

(

σ cos θ +
a(θ)(σr cos θ)

r

−b(θ)(σr cos θ + a(θ)(σr cos θ) + r sin θ)

r

)2

=
(√

k a(θ)σ cos θ
)2

+ (σ cos θ(1 + a(θ))(1 − b(θ)) + sin θ)
2

(1)

Noting that this is independent of r, we hereafter refer
to the gain as Qpa(a−, a+, b−, b+, θ), and then define
the cost for given control laws as

Jpa(a−, a+, b−, b+) = sup
θ

Qpa(a−, a+, b−, b+, θ)

and the optimal cost as

J∗
pa = inf

a−,a+

inf
b−,b+

Jpa(a−, a+, b−, b+)

2.4 Definition of Linear Control Laws

We similarly define the subclass of linear control laws
and their costs. For any a, b ∈ R, we define

γ1(y1) = ay1

γ2(y2) = by2

The gain for given control laws of this form and a given
input can then be defined as

Q2
l (a, b, θ) =

(√
k aσ cos θ

)2

(2)

+ (σ cos θ(1 + a)(1 − b) + sin θ)
2

the cost for given control laws as

Jl(a, b) = sup
θ

Ql(a, b, θ)

and the optimal cost as

J∗
l = inf

a
inf
b

Jl(a, b)

3 Linear Dominates Piecewise Affine

In this section, we show that the best piecewise affine
control law is actually linear, and also find the optimal
gains.

3.1 Optimal Values for Second Controller

Let θ∗ be defined as the point at which y1 > 0 and
y2 = 0. Thus

cos(θ∗) > 0 and σ(1 + a+) cos(θ∗) + sin(θ∗) = 0

or

θ∗ = arctan(−σ(1 + a+)) ∩ (−π/2, π/2)

We now focus on the half-circle |θ| ≤ π/2, from here
until Section 3.4. The value of Qpa on this half-circle
is unaffected by a−, and we thus refer to the gain as
Qpa(a, b−, b+, θ). We then define the worst-case cost
on the half-circle for given control laws as

Jhc(a, b−, b+) = sup
|θ|≤π/2

Qpa(a, b−, b+, θ)

and the optimal such cost as

J∗
hc = inf

a
inf

b−,b+
Jhc(a, b−, b+)

At θ∗, the gain Qpa is unaffected by our choice of b−, b+,
and so it represents a lower bound on our worst case
cost Jhc, an idea which is formalized at the end of this
subsection. Therefore, if we can choose b−, b+ such that
Qpa(θ∗) is the maximum over all θ, then it would be an
upper bound as well, and we will have found the optimal
values of b−, b+.

This is only possible if the left and right derivatives
with respect to θ are both non-positive. We can achieve
∂
∂θ Qpa(a, b−, b+, θ)

∣

∣

θ=θ∗
= 0 if b− = b+ = b∗(a) where

b∗(a) =
σ2(ka2 + (1 + a)2)

1 + σ2(1 + a)2
(3)

For a given value of a, it remains to be checked whether
this value of b leads to a peak or a trough at θ∗. Due
to the periodicity of Qpa we only need to show that the
second derivative at this point is negative, and we will
have the peak over all angles.

Since the value at θ∗ is unaffected by our choice of
b−, b+, we have

Qpa(a, b−, b+, θ∗(a))

= Qpa(a, b∗(a), b∗(a), θ∗(a)) ∀ b−, b+

which implies

Jhc(a, b−, b+) ≥ Qpa(a, b∗(a), b∗(a), θ∗(a)) ∀ b−, b+

which then implies

inf
b−,b+

Jhc(a, b−, b+) ≥ Qpa(a, b∗(a), b∗(a), θ∗(a)) (4)

which further implies

J∗
hc ≥ inf

a
Qpa(a, b∗(a), b∗(a), θ∗(a)) (5)
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In this subsection, for each value of a ∈ R we assume
that θ = θ∗(a) and that b− = b+ = b∗(a) as defined
above. We then seek the value of a which minimizes
Qpa(a, b∗(a), b∗(a), θ∗(a)), the lower bound from (4),
We define this lower bound as Qlb(a), and plugging (3)
into (1) we find that

Q2
lb(a) =

σ2(ka2 + (1 + a)2)

1 + σ2(1 + a)2

This function is plotted in Figure 2, along with its
asymptotes.
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Figure 2: Qlb(a) = Qpa(a, b∗(a), b∗(a), θ∗(a))

Letting α = kσ2 + k + 1 and β = 2σ
√

k, we find that
∂
∂aQ2

lb(a) = 0 iff a ∈ {a1, a2} where

a1 = 2(−α +
√

α2 − β2)/β2

a2 = 2(−α −
√

α2 − β2)/β2

These points are also shown in Figure 2, and we see
that the minimum occurs at a1. We now prove that
this is always the case.

Noting that

α2 − β2 = (kσ2 − 1)2 + (2σ2 + 1)k2 + 2k > 0

and thus, that a1, a2 ∈ R and a1, a2 < 0, we can express
the second derivative at these points as

∂2Q2
lb(a)

∂a2

∣

∣

∣

∣

a∈{a1,a2}

=
2σ2(kσ2a2 − 1)

a(1 + σ2(1 + a)2)2

Then,

kσ2a2
1 − 1 =

(

2
√

α2 − β2

β2

)

(

−α +
√

α2 − β2

)

< 0

(6)

and

kσ2a2
2 − 1 =

(

2
√

α2 − β2

β2

)

(

α +
√

α2 − β2

)

> 0

which leads to

kσ2a2
1 − 1

a1

=
√

α2 − β2 > 0

and

kσ2a2
2 − 1

a2

= −
√

α2 − β2 < 0

Hence the second derivative is positive only for a1, and
Qlb(a) must achieve its infemum either at a1 or at ±∞.

Letting γ = kσ2 − k − 1,

Q2
lb(a1) =

(2k + 1)α2 − (k + 1)β2 + γ2 + 2(γ − kα)
√

α2 − β2

α2 + (k − 1)β2 + γ2 + 2α
√

α2 − β2

As a → ±∞, Q2
lb(a) → k + 1.

(k + 1) − Q2
lb(a1) =

kβ2
√

α2 − β2

α2 + (k − 1)β2 + γ2 + 2α
√

α2 − β2
> 0

and thus
inf
a

Qlb(a) = Qlb(a1)

We hereafter refer to a∗ = a1. We have now shown

inf
a

Qpa(a, b∗(a), b∗(a), θ∗(a))

= Qpa(a∗, b∗(a∗), b∗(a∗), θ∗(a∗)) (7)

and combining (5), (7), we have

J∗
hc ≥ Qpa(a∗, b∗(a∗), b∗(a∗), θ∗(a∗)) (8)

3.3 Optimal Cost on Half-Circle

We showed that for any a, choosing b− = b+ = b∗(a)
would yield a lower bound on the induced norm at
θ∗(a), which would be equal to the induced norm if
the second derivative was negative.

Now that we have the value of a∗ for which this bound
is minimized, we need only check the second derivative
for that value.

∂2Q2
pa(a, b∗, b∗, θ)

∂θ2

∣

∣

∣

∣

∣

θ=θ∗

=
2σ2(ka2 + (1 + a)2)

1 + σ2(1 + a)2
(kσ2a2 − 1)

4



November 23, 2006 editedWe’ve already seen in (6) that

kσ2(a∗)2 − 1 < 0

and thus,

∂2Q2
pa(a, b∗, b∗, θ)

∂θ2

∣

∣

∣

∣

∣

θ=θ∗

< 0

The first derivative was already forced to zero by our
choice of b∗, and thus

Jhc(a
∗, b∗(a∗), b∗(a∗)) = Qpa(a∗, b∗(a∗), b∗(a∗), θ∗(a∗))

This tells us that

inf
b−,b+

Jhc(a
∗, b−, b+) ≤ Qpa(a∗, b∗(a∗), b∗(a∗), θ∗(a∗))

(9)

and combining (4), (9), we have

inf
b−,b+

Jhc(a
∗, b−, b+) = Qpa(a∗, b∗(a∗), b∗(a∗), θ∗(a∗))

which then implies

J∗
hc ≤ Qpa(a∗, b∗(a∗), b∗(a∗), θ∗(a∗)) (10)

Lastly, combining (8), (10), we get

J∗
hc = Qpa(a∗, b∗(a∗), b∗(a∗), θ∗(a∗)) (11)

3.4 Optimal Cost on Full Circle

In this subsection, we show that this optimum over the
half-circle is also the optimum over the whole circle,
and thus, that piecewise affine offers no advantage over
linear.

J∗
pa ≥ J∗

hc (12)

= Qpa(a∗, a∗, b∗(a∗), b∗(a∗), θ∗(a∗))

where the inequality holds because the supremum is
taken over a subset in the latter expression, and the
equality follows from (11).

Since cos(θ + π) = − cos θ and sin(θ + π) = − sin θ it
follows from (1) that

Qpa(a, a, b, b, θ + nπ) = Qpa(a, a, b, b, θ) ∀ n ∈ Z

and thus, when the control laws are linear the cost may
be determined on the half-circle, and so

Jpa(a∗, a∗, b∗(a∗), b∗(a∗))

= sup
θ

Qpa(a∗, a∗, b∗(a∗), b∗(a∗), θ)

= sup
|θ|≤π

2

Qpa(a∗, a∗, b∗(a∗), b∗(a∗), θ)

= Jhc(a
∗, a∗, b∗(a∗), b∗(a∗))

= Qpa(a∗, a∗, b∗(a∗), b∗(a∗), θ∗(a∗))

which implies

J∗
pa ≤ Qpa(a∗, a∗, b∗(a∗), b∗(a∗), θ∗(a∗)) (13)

and thus, combining (12), (13)

J∗
pa = Qpa(a∗, a∗, b∗(a∗), b∗(a∗), θ∗(a∗))

In other words, the infemum is achieved where a− = a+

and b− = b+, and the optimal piecewise affine controller
is linear.

The optimal linear controller must then result in the
same optimal cost

J∗
l = Ql(a

∗, b∗(a∗), θ∗(a∗)) (14)
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Figure 3: y1, y2, Qpa(a∗, a∗, b∗(a), b∗(a), θ)

The value of the gain with these optimal values is
shown along the circle in Figure 3, and the signals
passed to the controllers at each angle are shown as
well. Note that the worst case cost indeed occurs where
y2 = 0, that is, at θ∗.

4 Linear Dominates All Nonlinear

If we had assumed that γ1, γ2 were merely left- and
right-differentiable in the origin, then we would be
done, since the induced norm would always be lower
bounded by arbitrarily small inputs, and thus only
piecewise affine controllers of the form considered in
the previous section would have to be considered at all.
But we need not make any such assumption, as shown
in this section.

The following theorem states that the optimal linear
controller achieves the same performance as the optimal
overall controller.
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J∗ = J∗
l

Proof. Since the best controller is at least as good as
the best linear controller, we clearly have

J∗ ≤ J∗
l (15)

Given any γ1, γ2 : R → R, let

a = γ1(1)

and then let

θ0 = arctan(−σ(1 + a))

= θ∗(a)

and then choose

r0 = sec(θ0) / σ

such that

y1(r0, θ0) = σr0 cos(θ0)

= 1

and

y2(r0, θ0) = 0

and thus, using this, Lemma 1, (2), and (14), respec-
tively,

Q2(γ1, γ2, r0, θ0))

=
(√

kσa cos(θ0)
)2

+

(

σ cos θ +
√

kσa cos(θ0) −
γ2(0)

r0

)2

=
(√

kσa cos(θ0)
)2

+
(

σ cos θ +
√

kσa cos(θ0)
)2

= Q2
l (a, b∗(a), θ∗(a))

= J2
l (a, b∗(a))

which yields

J(γ1, γ2) ≥ Jl(a, b∗(a))

In other words, for arbitrary γ1, γ2 we can find a linear
controller which performs at least as well, and thus

J∗ ≥ J∗
l (16)

and the desired result follows from (15), (16).

5 Discussion and Conclusions

We have shown that given the same setup as the Wit-
senhausen Counterexample, if our objective is to op-
timize the induced norm, then linear controllers are
optimal. This was shown to hold true for arbitrary
values of the constants. We showed in Section 3 that
the best piecewise affine controller is linear, and specif-
ically calculated those control laws. Then in Section 4,
we showed that for any control laws, one can find linear
controllers which perform just as well, and thus, that
linear controllers are optimal.

This approach was partially redundant. It was not
necessary to first show that the optimal controller is op-
timal amongst all piecewise affine controllers, since it is
later shown that a linear controller dominates any given
control law. However, it is not yet clear which approach
will be most useful to generalize these results to other
information structures, and so Section 3 is presented in
its entirety.

This result raises the question of which, if not all,
other information structures admit uniformly optimal
controllers which are linear.
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