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Abstract

In 1968, Witsenhausen introduced his celebrated

counterexample, which illustrated that when an in-

formation pattern is nonclassical, the controllers

which optimize an expected quadratic cost may be

nonlinear. For the special invited session commem-

orating the fortieth anniversary of the counterex-

ample, we address one of the four follow-up ques-

tions listed in his original paper; namely, whether

there is a relation between the convexity of finding

the optimal affine controller, and whether that con-

troller is in fact optimal. In particular, we discuss

the connections between partially nested structures,

for which linear controllers are known to be optimal,

and quadratically invariant structures, for which op-

timal linear control is known to be convex.

1 Introduction

A classical information pattern assumes that, at every
time step, the controller can access not only informa-
tion from that time, but from all preceding times as
well. When this holds, and when the dynamics are lin-
ear, the cost quadratic, and the noise Gaussian, optimal
controllers are linear.

The Witsenhausen Counterexample [10] showed that
when a nonclassical information pattern exists, then
affine controllers may be suboptimal for the LQG cost.
To put this another way, the class of affine functions
is not always complete when the information pattern is
not classical.

The conclusions of his paper were as follows:

9. Conclusions. (i) Further study of linear, Gaussian,

quadratic control problems with general information

patterns appears to be required.

(ii) The existence of an optimum and the question of

completeness of the class of affine designs must be

examined as a function of the information pattern.

(iii) It would be interesting if a relation could be found

between the appearance of several local minima over

the affine class and lack of completeness of this class.

(iv) Algorithms for approaching an optimal solution

need to be developed. Because of the occurrence of local

minima, this appears to be a most difficult task.

(i) is obviously open-ended, and his work in-
deed motivated and catalyzed forty years of research
into decentralized control. (ii) was largely answered
by Ho and Chu in 1972 [2] with the introduction of
partially nested structures, for which linear controllers
are indeed optimal. These will be discussed at length
later. (iv) is fairly open-ended as well, and there has
certainly been a progression of nonlinear optimization
theory and tools, but there have also been specific
efforts to approach the optimal solution for the Wit-
senhausen counterexample, or to use it as a testbed
for new optimization tools. In particular, the best
known achievable cost (for benchmark values of the
parameters) was driven to a new low in [3] and was
further improved upon in [4].

In this paper, we address the third question.

2 Preliminaries

We review the Witsenhausen counterexample [10],
partially nested structures [2], and quadratic invari-
ance [7, 8].

2.1 Witsenhausen counterexample

We review the Witsenhausen counterexample, blend-
ing his original notation with variable names commonly
used in modern control frameworks.

Given noise

w =

[
w1

w2

]
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Figure 1: The Witsenhausen Counterexample

and control laws

u1 = γ1(y1) u2 = γ2(y2)

the system then evolves as follows, as indicated in
Figure 1

x0 = σw1 v = w2

y1 = x0 y2 = x1 + v

u1 = γ1(y1) u2 = γ2(y2)

x1 = x0 + u1 x2 = x1 − u2

and we wish to keep the following variables small

z1 = k u1

z2 = x2.

The noise was normally distributed w ∼ N (0, I) and we

seeked γ1, γ2 to minimize E ‖z‖2
2.

This differs from a standard LQG problem only in
that the second controller cannot access the informa-
tion that the first controller can access, and this subtle
difference is shown to cause the optimal controller to
no longer be linear, as well as to cause the problem
of finding the optimal linear controller to no longer be
convex. The obvious follow-up questions of, for which
information structures are linear controllers optimal,
and, for which information structures is the optimal
control problem convex, were largely answered by the
introduction of partially nested structures and quadrat-
ically invariant structures, respectively. These are the
topics of the next two subsections.

2.2 Partially Nested

We now review the framework and the main results
of [2]. We only alter notation from the original when
it is necessary to avoid doubly-defined variables later.
We also add a little notation where it will ease later
discussions, and try to clarify when we do.

Problem setup. Suppose we have N team members,
and let I := {1, . . . , N}.

We assume that we have an underlying random vari-
able ξ ∈ Rn on probability space (Rn, F , P ) and that
ξ ∼ N (0,X), for some X > 0.

Each team member i can access the measurement ỹi

where

ỹi = Hiξ +
∑

j

Dijuj ∀ i ∈ I (1)

and Hi and Dij are matrices of appropriate dimension.

While not explicitly defined as such, H ′
i and D′

ij are
used to indicate the components of Hi and Dij which
correspond to a new measurement, while the rest can
correspond to measurements of other team members
passed on to member i. To help make this distinction
as we go forward, we will refer to this new measure-
ment as yi, which will also be commensurate with our
notation in the next subsection.

For example, suppose that the measurement for the
first team member is random

ỹ1 = y1 = H1ξ = H ′
1ξ

and that the second team member can access this mea-
surement, as well as a new measurement affected by the
first member’s control input:

ỹ2 =

[
ỹ1

y2

]

=

[
H1

H ′
2

]

︸ ︷︷ ︸

H2

ξ +

[
0

D′
21

]

︸ ︷︷ ︸

D21

u1 +

[
0
0

]

︸︷︷︸

D22

u2.

D′
ij thus represents if and how control input j can af-

fect the new measurement i, and Dij thus represents if
and how control input j can affect the overall informa-
tion accessible to member i. The sparsity structure of
these matrices then defines the information structure.

They further assume that

Dij 6= 0 =⇒ Dji = 0 ∀ i, j ∈ I (2)
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September 11, 2008 editedwhere it seems to be presumed that each team member
decision corresponds to a particular time, so that this
would follow from causality. This is not always desired
if the team members correspond to, for example, differ-
ent subsystems which may affect one another; we will
revisit this assumption later. In fact, what they actu-
ally require is more restrictive than (2), since they want
to ensure that if control action uj affects the informa-
tion ỹi, then ui cannot affect the information ỹj . For
instance, the following,

D =





0 0 a

b 0 0
0 c 0





while not violating (2), would violate the actual as-
sumptions of their paper for any a, b, c 6= 0 due to the
cycle that it creates. To more formally state the actual
assumptions of the partially nested result, they require
that

∄ r1, . . . , rκ ∈ I such that

Dr1r2
, . . . ,Drκ−1rκ

,Drκr1
6= 0 (3)

for any postive integer κ. This includes the formerly
implicit assumption that

Dii = 0 ∀ i ∈ I (4)

which similarly was sensible for the types of problems
envisioned, but is not always desired. We will revisit
this as well.

The control input of each team member is
given as ui = γi(ỹi). Let Γi be the set of all
Borel-measurable functions γi : Rqi → Rki , and let
Γ = { [γ1, . . . , γN ] | γi ∈ Γi ∀ i ∈ I}. The objective is
then to find γ ∈ Γ to minimize

J = E
(1

2
uT Qu + uT V ξ + uT c

)
(5)

for some Q ∈ Rk×k, Q > 0, S ∈ Rk×n, c ∈ Rk.

Main PN result. Let Zi ⊂ F be the sub-σ-algebra
induced by fixing γi ∈ Γi.

They say that j is a precedent of i, and denote
j ≺ i, iff Dij 6= 0 or there exist r1, . . . , rκ ∈ I such that
Dir1

,Dr1r2
, . . . ,Drκ−1rκ

,Drκj 6= 0. This can be inter-
preted as saying that j is a precedent of i iff the jth
control input uj can affect the ith measurement ỹi.

An information structure is then defined to be par-
tially nested (PN) if

j ≺ i =⇒ Zj ⊂ Zi ∀ i, j ∈ I, ∀ γ ∈ Γ (6)

This translates to saying that an information structure
is partially nested if whenever the jth control input uj

can affect the ith measurement ỹi, then the jth mea-
surement ỹj can be deduced from ỹi. In others words,
whenever someone can affect what you see, you can see
everything that they can.

Their main result is then that if the information
structure is partially nested, then the optimal control
exists, is unique, and is linear.

The key to their proof was showing that when the
information structure is partially nested, the problem
is equivalent to what is known as a static team problem,
which is known to have a unique linear optimum [5]. In
this notation, a static team problem is simply one for
which D = 0, while also assuming that all Hi are fat
and full rank.

2.3 Quadratically Invariant

General problem setup. We now introduce the
framework in which quadratic invariance has been de-
veloped.

Suppose that we have linear spaces U ,W,Y,Z, and
a generalized plant P ∈ L(W × U ,Z × Y) partitioned
as

P =

[
P11 P12

P21 G

]

so that P11 : W → Z, P12 : U → Z, P21 : W → Y
and G : U → Y. Suppose K ∈ L(Y,U). If I − P22K is
invertible, define f(P,K) ∈ L(W,Z) by

f(P,K) = P11 + P12K(I − GK)−1P21

The map f(P,K) is called the (lower) linear frac-
tional transformation (LFT) of P and K, and is
also referred to as the closed-loop map. This rep-
resents the map from w to z with the interconnection
depicted in Figure 2. Note the abbreviation G := P22

made to simplify later discussion.

P11 P12

P21 G

K

w

uy

z

Figure 2: Linear-fractional, or two-input two-output
framework.

Given linear spaces U ,W,Y,Z, generalized plant P ∈
L(W × U ,Z × Y), and a subspace S ⊂ L(Y,U), the
objective is to solve the following problem:

minimize ‖f(P,K)‖
subject to K ∈ S

(7)
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September 11, 2008 editedHere ‖·‖ is an arbitrary system norm on L(W,Z),
which can be chosen to correspond to an expected
quadratic cost if desired, and S is a subspace of admis-
sible controllers, which can be used to encapsulate the
information structure of a decentralized / nonclassical
problem.

Main QI result. S is said to be quadratically in-
variant (QI) with respect to G iff

KGK ∈ S ∀ K ∈ S. (8)

The main result is then that if the information con-
straint is quadratically invariant, then the optimal con-
trol problem can be cast as a convex optimization prob-
lem.

Similar results have been obtained in this framework
for different spaces. In [7], the linear spaces considered
were arbitrary Banach spaces and thus the additional
constraint that (I − GK) be invertible was required.
In [8], extended spaces (L2e, ℓ2e) were considered and
thus the additional constraint that K stabilize P . For
now, we will proceed assuming that the spaces are real
vectors.

This setup is extremely general, and in many senses
contains the previous framework as a special case. We
now show how it is used for considering multiple sub-
systems or team members, each with access to different
information.

Sparsity constraints. Suppose that there are ny

separate measurements, and nu separate controller ac-
tions. Often, we will have ny = nu = N as each mea-
surement and control action corresponds to a given sub-
system, but that does not have to be the case. We
partition the sensor measurements and control actions
as

y =
[
yT
1 . . . yT

ny

]T
u =

[
uT

1 . . . uT
nu

]T

and then further partition G and K as

G =






G11 . . . G1nu

...
...

Gny1 . . . Gnynu




 K =






K11 . . . K1ny

...
...

Knu1 . . . Knuny






so that Gij maps the jth control input uj to the ith
measurement yi, and so that Kkl maps the lth mea-
surement yl to the kth control input uk.

Now, if one wants to consider the case where subsys-
tem controllers can access the measurements from some
subsystems but not from others, this information con-
straint manifests itself as a sparsity constraint on the
overall controller K to be designed.

We define a bit of notation that will allow this case
to be dealt with systematically. Given a binary matrix
Abin ∈ {0, 1}m×n, define the subspace

Sparse(Abin)

=
{
B ∈ Rm×n | Bij = 0 ∀ i, j s.t. Abin

ij = 0
}

and conversely, given B ∈ Rm×n, let Abin = Pattern(B)
be the binary matrix given by

Abin

ij =

{

0 if Bij = 0

1 otherwise

In words, Sparse(·) gives the set of all matrices with
the given sparsity pattern (represented with a binary
matrix), and Pattern(·) gives the sparsity pattern (in
the form of a binary matrix) of a given matrix.

Returning to the problem of interest, given an infor-
mation structure, we can construct an associated bi-
nary matrix Kbin, where Kbin

kl = 0 indicates that con-
troller k cannot access measurement l, and the problem
of finding the optimal controller with that information
structure becomes problem (7) with S = Sparse(Kbin).
If we further let Gbin = Pattern(G) give the sparsity
structure of the plant, it was shown in [7, 8] that S

is quadratically invariant under G iff ∀ i, l = 1, . . . , ny,
and ∀ j, k = 1, . . . , nu,

Kbin

ki Gbin

ij Kbin

jl (1 − Kbin

kl ) = 0. (9)

Thus we can systematically test, with these n2
yn2

u equa-
tions, whether the information structure is quadrati-
cally invariant, and thus, whether the optimal (linear)
control problem is convex.

3 The Relationship

We will now revisit the partially nested setup and re-
sults with an eye towards this framework. We will
mostly focus on the information structure, but also note
that the objective of a problem given in the form of [7]
matches up with the objective function of (5) if the
2−norm is chosen and if

Q = 2PT
12P12, V = 2PT

12P11X
− 1

2 , c = 0.

Conversely, given a problem in the form of [2], this can
be made to match up with the framework (7) if we
consider the 2−norm and choose

P11 =
1√
2
Q− 1

2 V X
1

2 , P12 =
1√
2
Q

1

2 , (10)

P21 = H ′X
1

2 , G = D′ (11)

as well as zdes = − 1√
2
Q− 1

2 c, where the objective is ad-

justed to keep z−zdes as small as possible. While [7, 8]
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September 11, 2008 editeddo not explicitly consider zdes 6= 0, and this would of
course effect the optimal controller, it does not affect
the convexity of the optimal control problem, and the
main results regarding quadratic invariance thus still
hold.

Let us now construct a binary matrix Kbin to repre-
sent the information structure in the PN framework

Kbin

ki =

{

1 if γk can access yi

0 otherwise

and a binary matrix Dbin to represent which measure-
ments depend on which inputs

Dbin

ij =

{

0 if D′
ij = 0

1 otherwise

In addition to the implicit assumptions mentioned in
Section 2.2, note also that the framework from that
section also leads to the implicit assumption that
Kbin

ii = 1 ∀ i.

We now state our main theorem, which shows that,
at least for the framework where partially nested is ex-
plicitly defined, it is actually equivalent to quadratic
invariance.

Theorem 1. The information structure is partially

nested iff ∀ i, j, k, l ∈ I,

Kbin

ki Dbin

ij Kbin

jl (1 − Kbin

kl ) = 0. (12)

Proof. Suppose first the the information struc-
ture is partially nested. Then for any k, i such that
Kbin

ki = 1, γk can access yi. Thus what γk sees is af-
fected by uj for all j such that Kbin

ki = 1,Dbin
ij = 1,

and so γk must have access to whatever γj has ac-
cess to for all i, j, k such that Kbin

ki = 1,Dbin
ij = 1.

It then follows that γk must have access to yl for
all i, j, k, l such that Kbin

ki = 1,Dbin
ij = 1,Kbin

jl = 1, and

thus we must have Kbin

kl = 1 for all i, j, k, l such that
Kbin

ki = 1,Dbin
ij = 1,Kbin

jl = 1, and (12) follows.

Now suppose that the information structure is not
partially nested. We will show by induction that (12)
must fail for some i, j, k, l. Consider the statement
Pκ: “If there exists a path of length κ such that
Dbin

i1i2
, . . . ,Dbin

iκj = 1, Kbin

jl = 1, and Kbin

i1l = 0, then
∃ i, j, k, l such that (12) fails.” If we can show that Pκ

holds for all integers k ≥ 1, we will be finished.

For k = 1, we have Kbin
i1i1

Dbin
i1j Kbin

jl (1 − Kbin

i1l ) = 1,
and P1 holds. Now assume that Pκ−1 is true, consider
a path of length κ, Dbin

i1i2
· · ·Dbin

iκj = 1, and consider

the value Dbin
i2i3

· · ·Dbin
iκjK

bin

jl (1 − Kbin

i2l ). If this is equal
to 1, then Pκ follows from Pκ−1. If it is equal to 0, then
Kbin

i2l = 1, and thus Kbin
i1i1

Dbin
i1i2

Kbin

i2l (1 − Kbin

i1l ) = 1, and
Pκ follows.

We have thus shown that for problems where par-
tially nested is defined, it is equivalent to quadratic
invariance! Thus the problems for which the optimal
linear control problem is convex, that is, for which there
are not multiple local minima over the linear class, are
the same as those for which this class is complete.

4 Remaining Questions

4.1 LQG

With the exception of the constant c addressed earlier,
the framework of quadratic invariance is much more
broad, and we now discuss what can be said about some
of the quadratically invariant problems for which par-
tially nested is not defined.

First, the constraint that Kbin
ii ∀ i, implicit in PN but

not in QI, is not actually restrictive. For any controller
that we label γi, we can (re)label its information or a
part of its information as yi. Should we choose not to
do that, we could still salvage the rest of the PN results
after redefining precedent such that l is a precedent of
k (l ≺ k) iff there exist i1, . . . , iκ ∈ I and j1, . . . , jκ ∈ I
such that Kbin

ki1
,Dbin

i1j1
,Kbin

j1i2
,Dbin

i2j2
, . . . ,Dbin

iκjκ
,Kbin

jκl = 1
which could then as before be interpreted as saying that
l is a precedent of k iff the lth control input ul can affect
the kth measurement ỹk.

Let us now turn our attention to the class of problems
with cycles that PN does not address; that is, problems
for which (3) is violated. The proofs of the main results
in [2] indeed break down in the presence of such cycles.
However, if such a cycle exists, and if the problem is QI,
then through iterative application of (9) we can show
that each controller in the cycle must be able to access
all of the information in the cycle. We can then define

uκ̃ =
[
uT

r1
· · · uT

rκ

]T
yκ̃ =

[
yT

r1
· · · yT

rκ

]T

and would then simply have Kbin

κ̃κ̃ = 1 and Kbin

κ̃j = 1 for

any j such that Kbin
rij

= 1 for some i ∈ 1, . . . , κ; that is,
the controller γκ̃ giving the new block variable uκ̃ must
be able to access all of the information which had been
available to any members of the cycle. We would then
of course also have Dκ̃κ̃ 6= 0; that is, Dbin

κ̃κ̃ = 1, and so
we see that the problem of extending the PN/QI rela-
tionship to cycles reduces to whether we can relax (4).

The proof of the main result of [2] indeed still breaks
down when Dii 6= 0 for some i. However once the
problem is reduced just to these internal cycles, more
standard centralized control techniques could be used,
such as finding the optimal map γ̃i(·) from the exter-
nal inputs Hiξ +

∑

j≺i,j 6=i Dijuj to ui (which would be

affine) and then recovering γi(·) = γ̃i(I + Diiγ̃i)
−1.

Formalizing the above argument, to show whether
all problems with quadratically invariant sparsity con-
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September 11, 2008 editedstraints over real vector spaces have linear optimal con-
trollers, even those for which the concept of partially
nested is undefined, could be a topic of future work.
Other quadratically invariant problems which could be
studied to see whether there is a link to some general-
ization of partially nested structures or other proofs of
linear optimality include control over other spaces be-
sides real vectors, as well as other constraints besides
sparsity constraints.

Lastly, we note that our main results regarding PN
and QI depend only upon the structure of the plant and
the information structure, and hold regardless of the
parameters of the cost. When more specific costs are
considered, problems can be found which violate these
conditions but which have linear optimal controllers or
for which finding optimal controllers is tractable. For
instance, [1] shows that the Witsenhausen counterex-
ample itself, with certain values of its constants, will
have linear optimal controllers.

4.2 Other Cost Criteria

The relationship between information structure and lin-
ear optimality is not well-understood for other cost cri-
teria besides LQG, but it seems that this connection be-
tween convexity and linear optimality is lost when one
considers other criteria. Two results in particular make
this point. In [9], the ℓ1−”norm” is considered (that
is, the cost induced by the ∞−norm), and an example
was presented for which linear controllers are subopti-
mal, even though the information structure was central-
ized. Centralized problems are trivially PN/QI, and so
this clearly represents a breakdown of the connection
between convexity and linear optimality. In [6], the
same problem setup as the Witsenhausen counterex-
ample is considered, but for the minimization of the
cost induced by the 2-norm, sometimes called uniformly
optimal control, rather than the LQG criterion. It is
shown that linear controllers are then optimal. As the
Witsenhausen counterexample is of course not PN/QI,
this represents the opposite type of breakdown of the
connection between convexity and linear optimality.

5 Conclusion

We have shown that partially nested and quadratically
invariant are actually equivalent conditions for prob-
lems where they are both well-defined. The former
is a condition for which optimal controllers are linear,
and the latter is a condition for which the optimal lin-
ear control problem is convex. Such a relationship was
surmised after the Witsenhausen counterexample elu-
cidated the difficulties of optimal decentralized control,
both in terms of nonlinearity and nonconvexity, and we

have shown for the fortieth anniversary that he had an
incredible amount of foresight.
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