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Abstract— We consider the problem of designing optimal
stabilizing decentralized controllers subject to an arbitrary
structural constraint, where each part of the controller has
access to some measurements but not others. We develop a
parametrization of the stabilizing structured controllers such
that the objective is a convex function of the parameter, with
the parameter subject to a single quadratic equality constraint.

I. INTRODUCTION

This paper addresses the problem of optimal structured

control, where we have multiple controllers, each of which

may have access to some sensor measurements but not

others. Most conventional controls analysis breaks down

when such decentralization is enforced. Finding optimal

controllers when different controllers can access different

measurements is notoriously difficult even for the simplest

such problem [1], and there are results proving computational

intractability for the more general case [2], [3].

When a conditional called quadratic invariance holds,

which relates these information constraints on the controller

to the system being controlled, then the optimal decentralized

control problem may be recast as a convex optimization

problem [4]. For a particular Youla parametrization, which

converts the closed-loop performance objective into a convex

function of the new parameter, the information constraint

becomes an affine constraint on the parameter, and thus the

resulting problem is still convex. The problem of finding

the best block diagonal controller however, which represents

the case where each subsystem controller may only access

measurements from its own subsystem, is never quadratically

invariant except for the case where the plant is block diagonal

as well; that is, when subsystems do not affect one another.

The parametrization and optimization of stabilizing block

diagonal controllers was addressed in a similar fashion using

Youla parametrization in [5], focusing on the 2-channel (or

2-block, 2-subsystem, etc.) case. The parametrization simi-

larly converts the objective into a convex function, but the

block diagonal constraint on the controller then becomes a

quadratic equality constraint on the otherwise free parameter.

It is further suggested that the trick for achieving this can be

implemented n− 1 times for n-channel control, resulting in

n− 1 quadratic equality constraints.

While this constraint causes the resulting problem to be

nonconvex, it still converts a generally intractable problem
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into one where the only difficulty is a well-understood type

of constraint. Solving this resulting constrained problem is

then further explored in [6], and many other methods exist

for addressing quadratic equality constraints.

In this paper, we address arbitrary structural constraints,

which are not generally block diagonal nor quadratically

invariant. We first in Section IV show how to convert this

general problem to a block diagonal synthesis problem. In

Section V, we then adapt the main insight of [5] and show

that this can then be similarly converted into a problem on a

stable Youla parameter with a convex objective, but subject

to a single quadratic equality constraint, regardless of the

number of blocks.

II. PRELIMINARIES

We suppose that we have a generalized plant P ∈ Rp

partitioned as

P =

[
P11 P12

P21 G

]

We define the closed-loop map by

f(P,K) = P11 + P12K(I −GK)−1P21

The map f(P,K) is also called the (lower) linear fractional

transformation (LFT) of P and K. Note that we abbreviate

G = P22, since we will refer to that block frequently, and

so that we may refer to its subdivisions without ambiguity.

This interconnection is shown in Figure 1.

P11 P12

P21 G

K

w

uy

z

Fig. 1. Linear fractional interconnection of P and K

We suppose that there are ny sensor measurements and

nu control actions, and thus partition the sensor measure-

ments and control actions as

y =
[
yT1 . . . yTny

]T
u =

[
uT
1 . . . uT

nu

]T

with partition sizes

yi ∈ L
pi

2 ∀ i ∈ 1, . . . , ny uj ∈ L
mj

2 ∀ j ∈ 1, . . . , nu
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and total sizes

y ∈ L
p
2,

ny∑

i=1

pi = p; u ∈ Lm
2 ,

nu∑

j=1

mj = m

and then further partition G and K as

G =





G11 . . . G1nu

...
...

Gny1 . . . Gnynu



 K =





K11 . . . K1ny

...
...

Knu1 . . . Knuny





with block sizes

Gij ∈ Rpi×mj
sp , Kji ∈ Rmj×pi

p ∀ i, j

and total sizes

G ∈ Rp×m
sp K ∈ Rm×p

p

This will typically represent n subsystems, each with its own

controller, in which case we will have n = ny = nu, but this

does not have to be the case.

a) Transfer functions.: We use the following standard

notation. Denote the imaginary axis by

jR =
{
z ∈ C | ℜ(z) = 0

}

and the closed right half of the complex plane by

C+ =
{
z ∈ C | ℜ(z) ≥ 0

}

We define transfer functions for continuous-time systems

therefore determined on jR, but we could also define transfer

functions for discrete-time systems determined on the unit

circle. A rational function G : jR → C is called real-

rational if the coefficients of its numerator and denominator

polynomials are real. Similarly, a matrix-valued function

G : jR → C
m×n is called real-rational if Gij is real-rational

for all i, j. It is called proper if

lim
ω→∞

G(jω) exists and is finite,

and it is called strictly proper if

lim
ω→∞

G(jω) = 0.

Denote by Rm×n
p the set of matrix-valued real-rational

proper transfer matrices

Rm×n
p =

{

G : jR → C
m×n | G proper, real-rational

}

and let Rm×n
sp be

Rm×n
sp =

{

G ∈ Rm×n
p | G strictly proper

}

Also let RH∞ be the set of real-rational proper stable

transfer matrices

RHm×n
∞ =

{

G ∈ Rm×n
p | G has no poles in C+

}

It can be shown that functions in RH∞ are determined by

their values on jR, and thus we can regard RH∞ as a

subspace of Rp. If A ∈ Rn×n
p we say A is invertible if

limω→∞ A(jω) is an invertible matrix and A(jω) is invert-

ible for almost all ω ∈ R. Note that this is different from

the definition of invertibility for the associated multiplication

operator on L2. If A is invertible we write B = A−1 if

B(jω) = A(jω)−1 for almost all ω ∈ R.

When the dimensions are implied by context, we omit the

superscripts of Rm×n
p ,Rm×n

sp ,RHm×n
∞ .

Let In represent the n× n identity.

A. Stabilization

P11 P12

P21 G

K

w

uy

z

Fig. 2. Linear fractional interconnection of P and K

We say that K stabilizes P if in Figure 1 the nine

transfer matrices from w, v1, v2 to z, u, y belong to RH∞.

We say that K stabilizes G if in the figure the four transfer

matrices from v1, v2 to u, y belong to RH∞. P is called

stabilizable if there exists K ∈ Rm×p
p such that K stabilizes

P . The following standard result relates stabilization of P

with stabilization of G.

Theorem 1: Suppose G ∈ Rp×m
sp and P ∈

R
(nz+p)×(nw+m)
p , and suppose P is stabilizable. Then

K stabilizes P if and only if K stabilizes G.

Proof: See, for example, Chapter 4 of [7].

For a given system P , all controllers that stabilize the

system may be parameterized using the well-known Youla

parametrization [8], stated below.

Theorem 2: Suppose that we have a doubly

coprime factorization of G over RH∞, that is,

Ml, Nl, Xl, Yl,Mr, Nr, Xr, Yr ∈ RH∞ such that

G = NrM
−1
r = M−1

l Nl and
[
Xl −Yl

−Nl Ml

] [
Mr Yr

Nr Xr

]

=

[
Im 0
0 Ip

]

. (1)

Then the set of all stabilizing controllers is given by

{K ∈ Rp | K stabilizes G}

=
{

(Yr −MrQ)(Xr −NrQ)−1
∣
∣

Xr −NrQ is invertible, Q ∈ RH∞

}

=
{

(Xl −QNl)
−1(Yl −QMl)

∣
∣

Xl −QNl is invertible, Q ∈ RH∞

}

.

Furthermore, the set of all closed-loop maps achievable with

stabilizing controllers is

{

f(P,K)
∣
∣ K ∈ Rp, K stabilizes P

}

=
{

T1−T2QT3

∣
∣ Xr−NrQ is invertible, Q ∈ RH∞

}

,

(2)

109



where T1, T2, T3 ∈ RH∞ are given by

T1 = P11 + P12YrMlP21

T2 = P12Mr

T3 = MlP21.

(3)

Proof: See, for example, Chapter 4 of [7].

The parameter Q is usually referred to as the Youla

parameter. We now show that the two parametrizations above

give the same change of variables.

Lemma 3: Suppose G ∈ Rsp. Then the set of all stabiliz-

ing controllers is given by

{K ∈ Rp | K stabilizes P} =
{

(Yr −MrQ)(Xr −NrQ)−1 = (Xl −QNl)
−1(Yl −QMl)

∣
∣ Q ∈ RH∞

}

.

Proof: The equivalence of stabilizing G and the gener-

alized plant P follows from Theorem 1. It follows from G

strictly proper that Nl, Nr are strictly proper, and thus the

invertibility conditions of Theorem 2 are always satisfied. It

just remains to show that the two parametrizations give the

same mapping from parameter to controller. This follows

very similarly from [5]:

(Yr −MrQr)(Xr −NrQr)
−1

= (Xl −QlNl)
−1(Yl −QlMl)

⇔ (Xl −QlNl)(Yr −MrQr)

= (Yl −QlMl)(Xr −NrQr)

⇔ (XlYr − YlXr)
︸ ︷︷ ︸

0

+Ql (MlXr −NlYr)
︸ ︷︷ ︸

Ip

= (XlMr − YlNr)
︸ ︷︷ ︸

Im

Qr +Ql (MlNr −NlMr)
︸ ︷︷ ︸

0

Qr

⇔ Ql = Qr.

Remark 4: Even if G is not strictly proper, the invertibility

conditions still hold for almost all parameters Q [9, p.111].

III. PROBLEM FORMULATION

We develop the optimization problem that we need to

solve for optimal synthesis subject to an arbitrary structural

constraint.

A. Structural Constraints

Structural constraints, which specify that each controller

may access certain sensor measurements but not others, man-

ifest themselves as sparsity constraints on the controller to be

designed. We here introduce some notation for representing

this type of constraint.

Let B = {0, 1} represent the set of binary numbers.

Suppose Abin ∈ B
m×n is a binary matrix. We define the

subspace

Sparse(Abin) =
{

B ∈ Rp | Bij(jω) = 0 for all i, j

such that Abin
ij = 0 for almost all ω ∈ R

}

giving all of the proper transfer function matrices which

satisfy the given sparisty constraint.

We then represent the constraints on the overall controller

with a binary matrix Kbin ∈ B
nu×ny where

Kbin
kl =







1, if control input k

may access sensor measurement l

0, if not.

The subspace of admissible controllers is then given as

S = Sparse(Kbin).

We can now set up our main problem of finding the best

such controller.

B. Problem Setup

Given a generalized plant P and a subspace of admissible

controllers S, we would then like to solve the following

problem:
minimize ‖f(P,K)‖

subject to K stabilizes P

K ∈ S

(4)

Here ‖·‖ is any norm on the closed-loop map chosen to

encapsulate the control performance objectives. The sub-

space of admissible controllers, S, has been defined above to

encapsulate the constraints on which controllers can access

which sensor measurements. We call the subspace S the

information constraint.

Many decentralized control problems may be expressed

in the form of problem (4). In this paper, we focus on the

case where S is defined by structural constraints as discussed

above.

This problem is made substantially more difficult in gen-

eral by the constraint that K lie in the subspace S. Without

this constraint, the problem may be solved with many stan-

dard techniques. Note that the cost function ‖f(P,K)‖ is

in general a non-convex function of K. If the information

constraint is quadratically invariant [4] with respect to the

plant, then problem may be recast as a convex optimization

problem, but no computationally tractable approach is known

for solving this problem for arbitrary P and S.

IV. DIAGONALIZATION

In this section, we show how the problem of finding the

optimal structured controller K ∈ S can be converted to a

problem of finding an optimal block diagonal controller.

Similar equivalences of decentralization constraints were

considered for a different purpose in [10], and we use

consistent notation where possible.
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The concepts in this section are fairly straightforward,

but covering the general case rigorously is unfortunately of

a tedious nature requiring multiple subscripts. The reader

wishing to skim this section need only take away that the

plant may be altered such that sensor measurements are

repeated and then controller inputs reconstituted in such

a way that the active parts of the controller are shuffled

around to make a block diagonal controller, and such that

the closed-loop map remains the same. Example 5 illustrates

the shuffling for a particular controller structure.

First, given structural constraints proscribed by a binary

matrix Kbin, define the total number of active blocks in an

admissible controller as

a =

nu∑

k=1

ny∑

l=1

Kbin
kl .

For each active block, that is, for each pair (k, l) such that

Kbin
kl = 1, assign a unique α ∈ {1, . . . , a}, and let κα = k

and λα = l. To avoid the use of triple subscripts later, we also

index the block sizes of our diagonal controller as bα = mκα

and cα = pλα
.

If we construct a block diagonal controller with the active

blocks along the diagonal, it will then have a total output

size and input size, respectively, of

au =

a∑

α=1

bα, ay =

a∑

α=1

cα.

We then define the subspace of block diagonal controllers

S̃ ⊂ R
au×ay
p as

S̃ =
{
diag(K̃11, . . . , K̃aa) | K̃αα ∈ Rbα×cα

p ∀ α
}
.

We now wish to show that we can construct a problem with

the objective of finding the optimal stabilizing block-diagonal

K̃ ∈ S̃ which is equivalent to our original problem of finding

the optimal stabilizing structured K ∈ S.

Let’s first consider the sensor measurements that such a

controller would have access to and call this ỹ. An active

block Kkl is able to see yl, and so the corresponding part

of ỹα has to be a copy of yl. ỹ thus becomes an extended

version of the original vector of sensor measurements y, with

measurements repeated as necessary for each active block of

the controller which has access to it. We can then define

ỹ ∈ L
ay

2 as follows

ỹ =
[
ỹT1 · · · ỹTa

]T
where ỹα = yλα

We can map from y to ỹ by defining the matrix U ∈ R
ay×p

as

Uαl =

{

Ipl
, if λα = l

0, otherwise.

Since each sensor measurement is accessed by at least

one controller block (otherwise it wouldn’t be a sensor

measurement), U has full column rank, and we can define a

left inverse U † ∈ R
p×ay as

U † = (UTU)−1UT .

We then have ỹ = Uy and y = U †ỹ.

We next turn our attention to the output of the block

diagonal controller, ũ = K̃ỹ. This will comprise the output

of each active controller block, from which we will have to

reconstitute the original controller input u. They are related

as follows

uk =

ny∑

l=1

Kklyl

=
∑

α:κα=k

K̃αỹα

=
∑

α:κα=k

ũα

and so we can map from ũ to u by defining the matrix

V ∈ R
m×au as

Vkα =

{

Imk
, if κα = k

0, otherwise.

Since each controller input can see at least one sensor

measurement, V has full row rank, and we can define a right

inverse V † ∈ R
au×m as

V † = V T (V V T )−1.

We then have u = V ũ, but do not necessarily have ũ = V †u.

We can now define a new generalized plant P̃ ∈

R
(nz+ay)×(nw+au)
p with the following components

P̃11 = P11 P̃12 = P12V

P̃21 = UP21 G̃ = UGV
(5)

which maps (w, ũ) → (z, ỹ).
Example 5: Suppose we are trying to find the best con-

troller K ∈ S where S = Sparse(Kbin) and where the

admissible controller structure is given by

Kbin =





1 0 1 0
0 1 0 0
1 0 0 1





that is, we need to find the best 3× 4 controller where only

5 particular parts of the controller may be active.

We then have a = 5, and assign (κ1, λ1) = (1, 1),
(κ2, λ2) = (3, 1), (κ3, λ3) = (2, 2), (κ4, λ4) = (1, 3), and

(κ5, λ5) = (3, 4). We then get

U =









I 0 0 0
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I









V =





I 0 0 I 0
0 0 I 0 0
0 I 0 0 I





such that ỹ = Uy =
[
yT1 yT1 yT2 yT3 yT4

]T
and such

that u = V ũ =
[
(ũ1 + ũ4)

T ũT
3 (ũ2 + ũ5)

T
]T

. The

matrix U repeats the first sensor measurement since the first

two active parts of the controller, and thus the first two parts

of the block diagonal controller, both need to access it, and

then the matrix V takes the 5 signals from the block diagonal

controller (ũ) and reconstitutes the 3 controller inputs (u).
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We may then replace the given generalized plant P with P̃

as in (5), and any admissible controller K ∈ S by the

block diagonal controller K̃ = diag(Kκ1λ1
, . . . ,Kκ5λ5

) =
diag(K11,K31,K22,K13,K34) such that K = V K̃U , and

this maintains the same closed-loop map.

Having motivated these transformations, we now need to

show that they indeed yield a diagonal synthesis problem

which is equivalent to our original problem.

We first give a lemma which verifies that we have properly

set up our bijection from admissible structured controllers

K ∈ S to block diagonal controllers K̃ ∈ S̃.

Lemma 6: Given K̃ ∈ S̃, we can let K = V K̃U , and

then K ∈ S.

Given K ∈ S, we can let

K̃αβ =

{

Kkl, if α = β, k = κα, l = λα

0, otherwise,
(6)

and then K̃ ∈ S̃ and K = V K̃U .

Proof: First, given K̃ ∈ S̃, let K = V K̃U . Then,

Kkl =

a∑

α=1

a∑

β=1

VkαK̃αβUβl

=

a∑

α=1

VkαK̃ααUαl since K̃ diagonal

=

{

K̃αα, if ∃ α such that (k, l) = (κα, λα)

0, otherwise

=

{

K̃αα, if Kbin
kl = 1, (k, l) = (κα, λα)

0, if Kbin
kl = 0

and so K ∈ S.

Now, given K ∈ S, we can define K̃ as in (6). K̃ ∈ S̃

clearly as it is defined to be block diagonal, and then K =
V K̃U is verified by the above equalities.

Remark 7: Note that given K ∈ S, V †KU † is generally

not in S̃.

If K = V K̃U , then

f(P,K) = P11 + P12(V K̃U)(I −GV K̃U)−1P21

= P11 + (P12V )K̃(I − UGV K̃)−1UP21

= P̃11 + P̃12K̃(I − G̃K̃)−1P̃21

= f(P̃ , K̃)

where we used the push-through identity in the second step,

and thus the closed-loop maps are identical.

With repeated use of the push-through identity we also

find
[
I K

G I

]−1

=

[
V 0
0 U †

] [
I K̃

G̃ I

]−1 [
V † 0
0 U

]

Thus if K̃ stabilizes G̃, then K stabilizes G. The converse

does not generally follow from this relation, but if an unstable

mode is suppressed by V,U †, V †, or U , we just need a

stabilizing K̃ which yields V K̃(I − G̃K̃)−1U = K(I −
GK)−1 to achieve the same closed-loop map. Generalizing

the technical conditions needed for this, or understanding in

what manner enforcing internal stability on the diagonalized

problem represents a stronger notion of stability enforced on

the orignal problem, is ongoing work.

V. PARAMETRIZATION

In this section, we assume that our problem has been

converted to one of finding an optimal block diagonal

controller, and address the problem of parametrizing all of

the stabilizing controllers and all of the achievable closed-

loop maps, to further transform the optimization problem to

one over a stable parameter with a convex objective. We

show that this can be achieved, with the diagonalization

manifesting itself as a quadratic equality constraint on the

parameter.

The key insight in this section, that a block diagonal

constraint can be expressed as in (7), which then becomes a

quadratic constraint in the Youla parameter, is largely derived

from Manousiouthakis [5]. There this idea was introduced

for 2-channel control (block diagonal with 2 blocks), and it

was suggested that the same technique could be used n− 1
times, resulting in n − 1 quadratic equality constraints on

the Youla parameter, to enforce a block diagonal constraint

with n blocks. Here, in addition to having first started with

an arbitrary structural constraint, we now show how this

parameterization can be achieved with just one quadratic

equality constraint, regardless of the number of blocks.

Define Ll ∈ R
au×au as

Ll = diag(Ib1 , 2Ib2 , . . . , aIba)

and define Lr ∈ R
ay×ay as

Lr = diag(Ic1 , 2Ic2 , . . . , aIca)

and note that the two matrices are identical if all controller

blocks are square or scalar.

We now show how these matrices can be used to enforce

a block diagonal constraint.

Lemma 8: Given K̃ ∈ R
au×ay
p ,

LlK̃ = K̃Lr ⇔ K̃ ∈ S̃. (7)

Proof:

LlK̃ = K̃Lr

⇔
a∑

k=1

(Ll)ikK̃kj =
a∑

k=1

K̃ik(Lr)kj ∀ i, j

⇔ (Ll)iiK̃ij = K̃ij(Lr)jj ∀ i, j since Ll, Lr diag.

⇔ iK̃ij = jK̃ij ∀ i, j

⇔ K̃ij = 0 ∀ i 6= j

⇔ K̃ ∈ S̃.

The following theorem is the main result of this section.

It shows that all of the stabilizing block diagonal controllers

can be parametrized by a stable Youla parameter, subject to a

single quadratic equality constraint. It further shows that the

set of all achievable closed-loop maps may then be expressed
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an an affine function of this Youla parameter, subject to the

same quadratic equality constraint.

Theorem 9: Suppose that P̃ is stabilizable, and that we

have a doubly coprime factorization of G̃ as in (1). Then

{K̃ ∈ Rp | K̃ stabilizes P̃ , K̃ ∈ S̃} =

{(Yr −MrQ)(Xr −NrQ)−1 | Q ∈ RH∞, q(Q) = 0}

where

q(Q) =
[
Iau

Q
]
[
W1 W2

W3 W4

] [
Iay

Q

]

(8)

and where
[
W1 W2

W3 W4

]

=

[
Xl Yl

−Nl −Ml

] [
Ll 0
0 Lr

] [
Yr −Mr

−Xr Nr

]

.

(9)

Further,

{f(P̃ , K̃) | K̃ stabilizes P̃ , K̃ ∈ S̃} =

{T1 − T2QT3 | Q ∈ RH∞, q(Q) = 0} (10)

where Ti are given as in (3).

Proof: With this change of variables, the equivalence

of Q ∈ RH∞ with K̃ stabilizing P̃ , as well as f(P̃ , K̃) =
T1−T2QT3, follow from Theorem 2. It just remains to show

that the diagonal constraint on the controller is equivalent to

the quadratic constraint on the Youla parameter. Note that

we utilize Lemma 3 and the equivalence of the left and right

parametrizations in the second step:

K̃ ∈ S̃

⇔ LlK̃ = K̃Lr

⇔ Ll(Yr −MrQ)(Xr −NrQ)−1

= (Xl −QNl)
−1(Yl −QMl)Lr

⇔ (Xl −QNl)Ll(Yr −MrQ)

= (Yl −QMl)Lr(Xr −NrQ)

⇔ (XlLlYr − YlLrXr)
︸ ︷︷ ︸

W1

+(YlLrNr −XlLlMr)
︸ ︷︷ ︸

W2

Q

+Q (MlLrXr −NlLlYr)
︸ ︷︷ ︸

W3

+Q (NlLlMr −MlLrNr)
︸ ︷︷ ︸

W4

Q = 0

⇔ q(Q) = 0

We may thus solve the following equivalent problem

minimize ‖T1 − T2QT3‖

subject to Q ∈ RH∞

q(Q) = 0

(11)

to find the optimal Q∗, recover the optimal diagonal con-

troller as K̃∗ = (Yr − MrQ
∗)(Xr − NrQ

∗)−1, and then

recover the optimal structured controller for our original

problem (4) as K∗ = V K̃∗U .

Remark 10: Note that the calculation of the Youla param-

eters (1) and the closed-loop parameters (3) in Theorem 9

must be based on G̃ and P̃ .

Remark 11: If the quadratic term, W4, is 0, then the

constraint if affine, and the resulting optimization problem

is convex. One can show that this occurs if and only if G̃

is block diagonal, which corresponds to a special case of

quadratic invariance.
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VI. CONCLUSIONS

We have considered the problem of synthesizing optimal

stabilizing controllers subject to an arbitrary structural con-

straint. We first showed how to recast this as a block diagonal

synthesis problem, and then how to recast that as a problem

over a stable Youla parameter with a convex objective.

The general problem we are addressing is known to be

intractable, and so it is not surprising that the resulting opti-

mization problem is not convex in general. However, we have

taken a broad class of important intractable problems, shown

how to handle them in a unified manner, and shown how the

inherent difficulty of the problem can be concentrated into a

single quadratic equality constraint.

The synthesis of optimal (decentralized) control via Youla

parametrization can now be summarized as follows. Without

structural constraints, finding the optimal stabilizing con-

troller can be cast as optimizing a convex function of the

Youla parameter, where the parameter is free and stable. If

the controller is instead subject to a quadratically invariant

structural constraint, the parameter is subject to an affine

equality constraint. If the controller is subject to a structural

constraint which is not quadratically invariant, the parameter

is subject to a quadratic equality constraint.
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