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Abstract— A seminal result in decentralized control is the
development of fixed modes by Wang and Davison in 1973
- that plant modes which cannot be moved with a static
decentralized controller cannot be moved by a dynamic one
either, and that the other modes which can be moved can be
shifted to any chosen location with arbitrary precision. These
results were developed for perfectly decentralized, or block
diagonal, information structure, where each control input
may only depend on a single corresponding measurement.
Furthermore, the results were claimed after a preliminary
step was demonstrated, omitting a rigorous induction for each
of these results, and the remaining task is nontrivial.

In this paper, we consider fixed modes for arbitrary
information structures, where certain control inputs may
depend on some measurements but not others. We provide a
comprehensive proof that the modes which can be altered by
a static controller with the given structure can be moved by a
dynamic one to any chosen location with arbitrary precision,
thus generalizing and solidifying the second part of Wang and
Davison’s result. A previous paper discussed the first part.

This shows that a system can be stabilized by a linear
time-invariant controller with the given information structure
as long as all of the modes which are fixed with respect to
that structure are in the left half-plane; an algorithm for
synthesizing such a stabilizing decentralized controller is then
distilled from the proof.

I. INTRODUCTION

This paper is concerned with the stabilization of
decentralized control systems, for which certain controller
inputs may depend on some measurements but not others.
This corresponds to finding a stabilizing controller which
satisfies a given sparsity constraint. A special case of this,
sometimes referred to as perfectly decentralized control,
occurs when each control input may depend only on a single
associated measurement, which corresponds to finding a
stabilizing controller which is (block) diagonal.

This special case is sometimes itself referred to as
decentralized control, particularly in the literature from a few
decades ago. This malleability or evolution of the definition
has not only caused some confusion, but has also resulted
in some important results in the field only being studied for
this special case.

We assume that plants and controllers are finite-
dimensional, linear time-invariant (FDLTI), except for when
we say otherwise.

A seminal result in decentralized control is the development
of fixed modes by Wang and Davison in 1973 [1]. This paper
studied (FDLTI) perfectly decentralized stabilization of FDLTI
systems. Its contributions can be broken into three main
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components - a definition establishing the framework, and two
subsequent results. Fixed modes were defined as those modes
of the plant which could not be altered by any static perfectly
decentralized controller (that is, by any diagonal matrix). The
first result was that these fixed modes could also not be
altered by any dynamic perfectly decentralized controller; if
you can’t move it with a static diagonal controller, you can’t
move it with a dynamic diagonal controller. The second result
was that if a mode is not fixed, then it can be moved arbitrarily
close to any chosen location in the complex plane (provided
that it has a complex conjugate pair if it is not real). These
can be taken together to state that a system is stabilizable by
a (dynamic) perfectly decentralized controller if and only if
all of its (static) fixed modes are in the left half-plane (LHP).

When proving these results, it was shown that allowing
one part of the controller to be dynamic does not result in any
fewer fixed modes than a static controller, and then claimed
that the second component followed; that is, that a dynamic
controller would not be able to move any of the fixed modes.
Similarly, it was shown that a single non-fixed mode could
be moved to any chosen location, and then claimed that the
third component followed; that is, that an arbitrary number of
non-fixed modes could be simultaneously moved to chosen
locations by a single controller. Getting from these initial
steps to a rigorous inductive argument, however, is not trivial.

We seek to study these fundamental concepts for arbitrary
information structure, while developing robust notation and
rigorous proofs, thus placing the new and existing results
on a sound mathematical footing.

We first introduced notation for fixed modes that allows
it to vary with information structure, as well as with the
type of controllers allowed (static, dynamic, linear, etc.).
We then showed in a preceding paper [3] that, for arbitrary
information structure, the fixed modes with respect to
dynamic controllers are the same as the fixed modes with
respect to static controllers, thus extending and solidifying
part of the seminal results of Wang and Davison. In this
paper, we provide a rigorous proof that the non-fixed modes
can then be moved to within an arbitrarily small distance
of chosen locations, using a dynamic LTI controller with the
given structure, thus extending and solidifying the remaining
part of their work. The proof is constructive, and we lastly
distill an explicit algorithm for the stabilizing decentralized
controller synthesis from the proof.

The obvious potential benefits of this work are an increased
understanding of decentralized stabilizability, and the verifi-
cation of important existing results. It is also our hope that
the notation developed will be useful in further extending our
understanding of decentralized stabilizability to richer classes
of controllers for which the fixed modes may diminish relative
to the original static definition, particularly non-linear and/or
time-varying controllers [4]–[7]. We further note that demon-

53rd IEEE Conference on Decision and Control
December 15-17, 2014. Los Angeles, California, USA

978-1-4673-6090-6/14/$31.00 ©2014 IEEE 4032



strating the results of this paper directly for arbitrary structure,
as opposed to attempting to diagonalize the problem and then
prove the original perfectly decentralized results, would likely
be useful when other types of stability are required which are
not invariant under such transformations, though we currently
focus on internal state stability. Finally, while the proofs
in [1], (as well as [7]), are constructive in nature, they do
not clearly lead to an explicit synthesis algorithm. A further
advantage of proving this result in earnest was the ability
to extract such an algorithm, which then finds a stabilizing
LTI decentralized controller whenever one exists. We later
learned of the work in [2], which also contains an algorithm;
we will briefly contrast them when discussing an example.

The organization of this paper is as follows. In Section II
we define notation and preliminaries, including our definition
of fixed modes and the controller types that we will later need.
In Section III we review certain previous results. In Section IV,
we then state and prove our main results. In Section V, we give
the explicit computational algorithm, along with a numerical
example, followed by some concluding remarks in Section VI.

II. PRELIMINARIES

We proceed with the following preliminary definitions. Let
<(·) denote the real part of any complex number. Define C to
be the complex plane and C−,{λ∈C|<(λ)<0} to be the
open left-half plane, and C+ ,C\C−= {λ∈C|<(λ)≥ 0},
to be the closed right-half plane. Let ei denote the unit
vector of all zeros except for ith element which is 1. The
‖·‖∞ for real matrices is defined as:

‖A‖∞ = max
i

(∑
j
|Aij |

)
We consider an FDLTI plant P (σ) (where σ = s, z

depending on whether we are considering continuous or
discrete cases, we use σ for statements that apply to both
continuous time and discrete time cases). A state space
representation of P is denoted by (AP ,BP ,CP ,DP ). All
controllers under consideration in this paper will also be
FDLTI. We will be imposing information constraints on our
controller, which manifest as sparsity constraints. We suppose
that we have a collection of pairs of indices (i,j) such that
the ith input to the plant is allowed to depend on the jth
measurement. We then define S , our set of controllers with the
desired structure, as those for which Kij=0 for any index pair
which is not in this set. For a sparsity pattern S , we similarly
let Adm(S) denote the set of admissible indices for which
the controller is allowed to be non-zero, i.e., (i,j) /∈Adm(S)
if and only if Kij=0 for all K∈S . For the ease of notation
let Kbin be the binary matrix of same size as K, for which
Kbin
ij = 1 if and only if (i,j) ∈ Adm(S), and 0 otherwise.

Also for simplicity we define Sc to be the centralized sparsity
patterns, i.e., no sparsity (Adm(Sc)={(i,j) ∀ i,j}).

We also define type of a controller that will help us to
easily refer to whether a controller K is static, dynamic, or
static for some element but dynamic for others. Let the type
T of controller K be defined as follows:

• T d: Set of finite order dynamic controllers, i.e.,
AK ,BK ,CK ,DK each are real matrices of appropriate
dimension.

• T s: Set of static controllers, i.e., AK ,BK , and CK are all
zero and only DK ∈ Rnu×ny could be non-zero, where
nu, and ny are respectively number of inputs, and outputs
of the plant.

• T s+1
i+,j+ : Set of controllers such that all the elements of

controller are static except for (i+,j+)th element which
could be dynamic, i.e., for all (i,j) 6= (i+,j+), Kij ∈ R
and Ki+,j+ is a proper transfer function in σ. This could
be read as “static plus one”.

For any information structure S, let a , |Adm(S)| be the
number of admissible non-zero indices in controller, and let
the tuple I , {(i1,j1),···,(ia,ja)} be any arbitrary ordering
of admissible non-zero indices of controller. Also for any
D∈T s∩S, define the following sequence of matrices Dm,
m∈{0,1,···,a} as:

D0,0, Dm,
m∑
l=1

eilDiljle
T
jl
, m∈{1,···,a} (1)

where eil ∈Rnu , and ejl ∈Rny , for p∈{1,···,a}.
Throughout the rest of this paper we assume that DP =0,

and thus the closed-loop has a state-space representation
with dynamics matrix denoted by ACL(P,K), given by:

ACL(P,K)=

(
AP +BPDKCP BPCK

BKCP AK

)
(2)

as illustrated in Figure 1, let Γ(P,K) denote the map from
the set-point to the outputs of P (i.e., from r to y), when
K is closed around P :

P

K

y r

Γ(P,K)

+

(a) Graphical representation

 ACL(P,K)
BP
0

CP 0 0

(σ)

(b) A state-space
representation

Fig. 1: The map Γ(P,K) from set-points to outputs when
K is closed around P .

The following property of Γ(·,·) can be verified by writing
the state-space representation of both sides, we have:

Γ(Γ(P,K1),K2) = Γ(P,K1+K2). (3)

Definition 1: The set of fixed-modes of a plant P with
respect to a sparsity pattern S and a type T , is defined to be:

Λ(P,S,T ),{λ∈C|λ∈eig(ACL(P,K)),∀K∈S∩T } (4)
Remark 2: This reduces to the definition of fixed modes

in [1] if S=Sd and T =T s.
For any FDLTI system P , denote its open-loop modes by

Λ(P ), and for each mode λ∈Λ(P ), let µ(λ,P ) denote its
multiplicity. We can partition open-loop modes as:

Λ(P )=Λ(P,S,T s)∪Λ+(P )∪Λ−(P ) (5)

Λ+(P )={α∈Λ(P )|<(α)≥0}\Λ(P,S,T s)

Λ−(P )={β∈Λ(P )|<(β)<0}\Λ(P,S,T s)
(6)
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are respectively distinct unstable (stable) non-fixed open-
loop eigenvalues of P . Denote the total (with multiplicities)
number of unstable non-fixed modes of a plant P by ν(P ),∑
α∈Λ+(P )µ(α,P ).. With a slight abuse of notation, we may

use Λ(A), Λ+(A), and Λ−(A), for a matrix A, to respectively
refer to eig(A), eig(A)∩C+, and eig(A)∩C−. Let B(λ0,ε),
{λ∈C | |λ−λ0|<ε} denote the ε-ball around λ0.

III. REVIEW

In this section we state some properties regarding fixed
modes of a FDLTI system.

The following lemma will review the result regarding
fixed modes with respect to a centralized sparsity pattern Sc:

Lemma 3: For any plant P ,

Λ(P,Sc,T s) =
⋃

i=2,3,4

eig
(
Ãii

)
(7)

where Ãii are the blocks in the Kalman (c.f. [8]) canonical
decomposition of plant P , such that the fixed modes are the
union of uncontrollable or unobservable modes of P .

Proof: See, for example, Theorem 2 in [9].
The following result regarding the fixed modes of an

FDLTI system was established in the preceding paper [3]:
Theorem 4: For any FDLTI plant P , and any arbitrary

information structure S, the set of fixed modes w.r.t. static
controllers in S is equivalent to the set of fixed modes w.r.t.
dynamic controllers, i.e.:

Λ(P,S,T s) = Λ
(
P,S,T d

)
. (8)

Proof: See [3] for a comprehensive proof.
In order to prove the main theorem, we will use the

following lemma from [1]. The lemma states some properties
regarding continuity and topology of non-fixed modes w.r.t.
static controllers.

Lemma 5: For any plant P , and any information
structure S, partition the open-loop eigenvalues of P as in
(5), then we have:

1) There exist ε > 0, such that B(λ, ε) ⊂ C−, for all
λ∈Λ−(P ).

2) For all ε>0, there exist γ>0 such that for all D∈S∩T s

with ‖D‖∞<γ, there are exactly µ(λ,P ) eigenvalues of
ACL(P,D) in B(λ,ε), for all λ∈Λ+(P )∪Λ−(P ).

3) For all γ>0, there exist D∈T s∩S with ‖D‖∞<γ, such
that λ /∈eig(ACL(P,D)), for all λ∈Λ+(P )∪Λ−(P ).

Proof: See, for example, Lemma 4 in [1]. The proof
does not use any property specific to only block-diagonal
information structure and thus could be replaced by any
arbitrary information structure.

Remark 6: It follows from the proof that non-admissible
D that violate part 3 of Lemma 5, forms a subset with
zero Lebesgue measure, thus a sufficiently small random
D ∈ S satisfies all the conditions of Lemma 5. Precisely,
the space of static controllers that does not satisfy part
3 of Lemma 5 construct a finite union of hyper-surfaces
in (T s ∩ S) ⊂ Rnu×ny . Thus, a D that satisfies all the
conditions of Lemma 5, can be found with probability one
by randomly choosing direction of D ∈ T s ∩S, and then
scaling it appropriately such that ‖D‖∞<γ.

IV. MAIN RESULT

With a constructive proof, we will show that we can
stabilize a plant P with arbitrary information structure S,
as long as it has no unstable fixed modes. We will achieve
this by showing that we can always find a controller which
will reduce the number of unstable modes, while leaving all
of the fixed modes in the LHP, which can then be applied
as many times as required.

We first establish the following theorem.
Theorem 7: For any plant P with |Λ+(P )| ≥ 1, and

fixed-modes in LHP (i.e., Λ(P,S,T s)⊂C−), there exist a
DK ∈T s∩S, and an integer m∈{1,···,a}, such that:

1) For some α∈Λ+(P ), α is a controllable and observable
mode of the following SISO system:

Pm=

[
Am Bm
Cm 0

]
,

[
AP +BPDKCP BPeim

(ejm)TCP 0

] (9)

2) The total number of unstable modes of Pm is no greater
than that of P , i.e.:

ν(Pm)≤ν(P ) (10)

Proof: The proof is depicted as follows, we will first
find a D ∈ T s ∩ S that when closed around P , move all
of its unstable eigenvalues, then based on this D, we will
find a Dm ∈ T s∩S, such that at least one of the unstable
modes of P , would also be an unstable mode of Γ(P,Dm−1)
with multiplicity at least one, but there would be no common
unstable mode between Γ(P,Dm), and P , this means that
only changing the (im,jm)th element of Dm−1, will change
the common unstable mode between P , and Γ(P,Dm−1), and
thus those modes must be in the set of controllable and observ-
able modes of the corresponding SISO plant from uim to yjm .

Proof of part 1: partition eigenvalues of P as in (5), then
based on Lemma 5.1, we can choose ε > 0 small enough
such that all the ε-balls around stable modes of P would be
in LHP, this along with part 2, and 3 of Lemma 5, guarantees
existence of a D ∈ T s ∩ S such that due to Lemma 5.2,
ACL(P,D) has no greater number of unstable modes than

that of P ,

( ∑
α∈Λ+(P )

µ(α,P )

)
, and due to Lemma 5.3,

α /∈eig(ACL(P,D)), for all α∈Λ+(P ).
Construct a sequence of matrices Dm∈T s∩S as in (1),

so that Da=D, and D0 =0, thus:

∀α∈Λ+(P ) : α /∈eig(ACL(P,Da))

∀α∈Λ+(P ) : α∈eig(ACL(P,D0)),

µ(α,Γ(P,D0))=µ(α,P )

By decreasing m from a to 1, there must exist a value
of m∈{1,···,a}, such that:

∀α∈Λ+(P ) : α /∈eig(ACL(P,Dm)) (11a)
∃α∈Λ+(P ) : α∈eig(ACL(P,Dm−1)),

µ(α,Γ(P,Dm−1))≥1
(11b)
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thus if we set DK =Dm−1 and use the definitions from (9),
as illustrated in Figure 2, we have:

Λ(Γ(P,Dm))

=eig(ACL(P,Dm))=eig(AP +BPDmCP )

=eig
(
AP +BPDm−1CP +BPeimDim,jmeTjmCP

)
=eig(Am+BmDim,jmCm) =eig(ACL(Pm,Dim,jm))

(12)

From (11b), there exists at least one α∈Λ+(P ) such that:

α∈eig(ACL(P,Dm−1)) = eig(Am),

µ(α,Γ(P,Dm−1))≥1

but due to (11a),

α /∈eig(ACL(P,Dm))
(12)
= eig(ACL(Pm,Dim,jm))

hence, for all such α that are moved by only closing Dim,jm

around the SISO system Pm (for which the only information
structure is the centralized one, Sc), we have:

∃Dim,jm ∈R s.t. : α /∈eig(ACL(Pm,Dim,jm))

⇒ α /∈Λ(Pm,Sc,T s)

and finally, since, due to Lemma 3, fixed modes of any
FDLTI plant with centralized information structure is equal
to its unobservable or uncontrollable modes, we must have
that those α are controllable and observable mode of Pm.

Proof of part 2: since ε-balls in Lemma 5.1 are chosen
sufficiently small to keep the stable modes in LHP, then the
resulting D that is described in proof of part 1 is such that
ACL(P,D)=AP +BPDCP has no more unstable eigenvalue
than P itself (due to Lemma 5.2), also due to definition of
matrices Dm, for each m∈{0,1,···,a}, ‖Dm‖∞≤‖D‖∞≤γ,
and thus from Lemma 5.2, Am=AP +BPDm−1CP has no
more unstable eigenvalue (counting with their multiplicities)
than that of P .

+

P

Dm−1

K ′

eTjm eim

uy

y′ u′

Pm

Fig. 2: Pm is the SISO map from u′ to y′, and Km is the map
from y to u, giving the total control for the original plant.

In the following Proposition, we will take advantage of the
well known result regarding arbitrarily placing controllable
and observable modes of a plant with no information
constraint on the controller by designing a observer-based
controller to stabilize some of the unstable modes of Pm,
defined in (9), more specifically those that are controllable

and observable. We will add one further design constraint
that unstable modes of controller would be different than that
of Pm, and will show that this constraint is always feasible.
This ensures that an induction argument can be used later
on. This constraint is not mentioned in [1] even for diagonal
information structure, and it is unclear that without such
a constraint how the induction could follow, even for the
diagonal information structure.

Proposition 8: All the controllable and observable
unstable modes of the plant Pm can be stabilized by an
observer-based controller K ′ such that:

Λ+(K ′) ∩ Λ+(Γ(Pm,K
′)) = ∅. (13)

Proof: Our proof is in a constructive manner, we will
first find a K ′ to only stabilize the controllable and observable
modes of Pm without considering (13), and then do an
appropriate perturbation when it is not met by K ′ at the end.

First find a similarity transformation T that will put Pm
in its Kalman canonical form, therefore we would have:[

T 0
0 I

][
Am Bm
Cm 0

][
T−1 0

0 I

]
=

Ã11 0 Ã13 0 B̃1

Ã21 Ã22 Ã23 Ã24 B̃2

0 0 Ã33 0 0

0 0 Ã43 Ã44 0

C̃1 0 C̃2 0 0


(14)

it is notable that all the (̃·) parameters depend on the
transformation matrix T and the state-space representation
of Pm. We want to stabilize all the unstable modes in Ã11.
Since based on definition (Ã11,B̃1) is a controllable pair and
(Ã11,C̃1) is an observable pair, there exists a state feedback
gain F , and an observer gain L, such that eigenvalues of
Ã11−B̃1F , and Ã11−LC̃1 can be arbitrarily assigned, and
hence can be stabilized. Take:

K ′=

[
A′ B′

C ′ 0

]
=

[
Ã11−B̃1F−LC̃1 L

−F 0

]
. (15)

With the help of two similarity transformations, we have:

eig(ACL(Pm,K
′))=

eig
(
T1ACL(

[
T 0
0 I

]
Pm

[
T−1 0

0 I

]
,K ′)T−1

1

)
=eig

Ã11−B̃1F 0 Ã13 0 −B̃1F

Ã21−B̃2F Ã22 Ã23 Ã24 −B̃2F

0 0 Ã33 0 0

0 0 Ã43 Ã44 0

0 0 LC̃2−Ã13 0 Ã11−LC̃1

,
(16)

with T being the same transformation which puts Pm in its
Kalman canonical form, and T1 keeps the first four rows the
same and subtract first row from fifth. Thus the eigenvalue
of the closed loop would be

eig(ACL(Pm,K
′))=

eig
(
Ã11−B̃1F

)
∪eig

(
Ã11−LC̃1

)
∪
(

4⋃
i=2

eig
(
Ãii

))
(17)

therefore for all observer-based controllers that naturally
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satisfy eig
(
Ã11−B̃1F

)
∈ C−, and eig

(
Ã11−LC̃1

)
∈C−;

unstable modes of Γ(Pm,K
′) would be independent of F ,

and L. Thus we have:

Λ+(Γ(Pm,K
′))=

4⋃
i=2

Λ+(Ãii), (18)

and all unstable modes in Ã11 can be stabilized by
appropriate choice of matrices L, and F . According to (18),
constraint (13) is not met if and only if

Λ+(K ′)
⋂(

4⋃
i=2

Λ+(Ãii)

)
6=∅, (19)

in this case, we enforce (13) by appropriately perturbing the
L matrix. We claim that there exist a perturbation L̂ such
that for K̂ ′ defined as:

K̂ ′,

[
Ã11−B̃1F−(L+L̂)C̃1 L+L̂

−F 0

]
(20)

then (13) is satisfied. To see this first define W as:

W ,

[
Ã11−B̃1F−LC̃1 I

C̃1 0

]
. (21)

If we close static L around W , we have:

ACL(W,L)=Ã11−B̃1F−LC̃1+LC̃1 =Ã11−B̃1F,

and thus we must have that Λ(W,Sc,T s)⊂eig
(
Ã11−B̃1F

)
.

Since F is chosen to stabilize Ã11, we have
eig

(
Ã11−B̃1F

)
⊂ C−, hence Λ (W,Sc,T s) ⊂ C−.

Also since L is chosen such that eig
(
Ã11−LC̃1

)
⊂C−, and

thus due to a continuity argument, for all sufficiently small
L̂, eig

(
Ã11−(L+L̂)C̃1

)
⊂C−, i.e.:

∃ γ>0: eig
(
Ã11−(L+L̂)C̃1

)
⊂C− ∀ L̂ with ‖L̂‖∞<γ.

Applying Lemma 5.3 with P =W , and S=Sc, guarantees
existence of a perturbation L̂, such that all the non
fixed-modes of W (which include all the Λ+(W )) would
be changed by closing L̂ around W , i.e.:

∃ L̂ with ‖L̂‖∞<γ s.t. :

1. eig
(
Ã11−(L+L̂)C̃1

)
⊂C−

2. Λ+(Γ(W,L̂))
⋂( 4⋃

i=2

Λ+(Ãii)

)
=∅.

Since Λ+(Γ(W,L̂)) = Λ+(Ã11−B̃1F−(L+L̂)C̃1), by
perturbing L by L̂, all the conditions of Proposition 8 would
be met if we use K̂ ′ instead of K ′.

Corollary 9: For every plant P that satisfies the
assumptions of Theorem 7, there exists a controller Km,
such that for some m∈{1,···,a}, Km∈T s+1

im,jm
∩S , and:

ACL(Pm,K
′) = ACL(P,Km), (22)

ν(Γ(P,Km)) ≤ ν(P )−1, (23)

Λ+(Km) ∩ Λ+(Γ(P,Km)) = ∅, (24)

where Pm and K ′ are determined as above.
Proof: Use Theorem 7 to find DK , and m, and

Proposition 8 to find K ′, and construct the MIMO controller
Km = Dm−1 + eimK

′eTjm . As illustrated in Figure 2, this
Km that has the following state-space representation

Km=

[
AKm BKm
CKm DK

m

]
=

[
A′ B′eTjm

eimC
′ DK

]
(25)

satisfies (22). Due to Theorem 7 and Proposition 8, K ′
will stabilize at least one unstable mode of P , thus we
have ν(Γ(Pm,K

′)) ≤ ν(P ) − 1, then (23) would be an
immediate result of this property of K ′ combined with (22).
Furthermore, as per construction (25), we have AKm = A′,
thus Λ+(K ′) = Λ+(Km), similarly, because of (22), we
have Λ+(Γ(Pm,K

′)) = Λ+(Γ(P,Km)), thus (24) follows
from (13).

We use induction to prove that if all the fixed modes of P
are in LHP, then we can stabilize P by dynamic controller.
We will first define the following interconnection that will
be useful in the induction. Let G(0) , P and at each step
k, denote the transfer function from u to y, as illustrated
in Figure 3, by G(k+1), i.e., G(k+1) = Γ(G(k),K

(k)
m ). Let

(A
(k)
G ,B

(k)
G ,C

(k)
G ,0) be a state-space representation for G(k),

also denote the total number of unstable modes of G(k) by
ν(k),

∑
α∈Λ+(G(k))

µ(α,G(k)).

G(k)

K
(k)
m

y u

G(k+1)

+

Fig. 3: Plant G(k+1),Γ(G(k),K
(k)
m ).

The induction is such that in each step k, we will find an
integer m(k) ∈ {1,··· ,a}, and a K(k)

m ∈ T s+1
i
m(k) ,jm(k)

∩S that
when closed around G(k), will stabilize at least one unstable
mode of G(k), thus ν(k+1)≤ν(k)−1. Then we will treat the
corresponding G(k+1) as the new plant for which we want
to stabilize the rest of remaining ν(k+1) unstable eigenvalues.
Thus in at most ν(0) steps, P will be stabilized. A crucial
part of induction is that G(k+1) must have no fixed-mode
in closed RHP, this is not addressed in [1] and at this point
it is directly claimed that Theorem 12 holds true. We will
formalize this fact with the help of following lemma. It is
enough to show that closing Km around P does not add any
unstable fixed modes to Γ(P,Km).

Lemma 10: Assume that all the fixed modes of P are in
LHP, i.e.:

Λ(P,S,T s) ⊂ C−, (26)

also, assume that a controller Km is such that it satisfies
(24), then we have:

Λ(Γ(P,Km),S,T s) ⊂ C−. (27)
Proof: Proof is done by contradiction, we will first create

the following set-up to state the idea. Let (AK ,BK ,CK ,DK)
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be a state-space representation for Km. We have:

Λ(P,S,T s) ⊆ Λ(Γ(P,Km),S,T s), (28)

since otherwise, if λ /∈Λ(Γ(P,Km),S,T s), then, by Definition
1, there exist a K2, such that, λ /∈ Γ(Γ(P,Km), K2)

(3)
=

Γ(P, Km+K2), thus λ /∈ Λ
(
P,S,T d

) (8)
= Λ (P,S,T s).

Next, It is trivial to check that if we close −Km around
Γ(P,Km), then by applying a similarity transformation T2,
Γ(Γ(P,Km),−Km) can be written as:[

T2 0
0 I

]
Γ(Γ(P,Km),−Km)

[
T−1

2 0
0 I

]

=

 AP BPCK 0 BP
0 AK 0 0

BKCP 0 AK 0
CP 0 0 0

, (29)

thus we have

eig(Γ(Γ(P,Km),−Km)) = eig(AP ) ∪ eig(AK).

Furthermore, due to (26), there exist a D∈T s∩S that will
move all the unstable modes of AP , we can apply the same
D on (29) to move all non fixed-modes of AP , thus we have:

Λ(Γ(P,Km),S,T s) ⊆ Λ(P,S,T s) ∪ eig(AK). (30)

Now we are ready to do the main contradiction part,
assume that there exist an α ∈ Λ (Γ(P,Km),S,T s), with
<(α)≥0, then

α∈Λ(Γ(P,Km),S,T s), <(α)≥0

α
(30)
∈ Λ(P,S,T s) ∪ eig(AK)

(26)⇒ α∈eig(AK)
(24)⇒ α /∈eig(Γ(P,Km)) ⇒α /∈Λ(Γ(P,Km),S,T s),

thus we have achieved the desired contradiction.
In Lemma 10, constraint (24) is a sufficient condition to

make the proof achievable and is always feasible if we want
to only stabilize the plant P , however, since the perturbation
L̂ changes modes of Ã11− (L+ L̂)C̃1, this further design
constraint may prevent specific pole assignment when it is
not met. Nevertheless, by choosing L̂ sufficiently small, we
can place poles arbitrary close to the desired positions.

Now we are ready to claim that if all the fixed modes of P
are in LHP, then we can stabilize P by a dynamic controller.
This stabilizing controller would be a summation of individual
controllers K(k)

m , each obtained in one step of the induction,
where in each step k, K(k)

m would only have one dynamic ele-
ment (i.e., K(k)

m ∈T s+1
i
m(k) ,jm(k)

∩S , for some m(k)∈{1,···,a}).

Theorem 11: For any plant P , and any information
structure S , if Λ(P,S,T s)⊂C−, then there exist a stabilizing
controller K∈T d∩S that will stabilize P .

Proof: Proof is done by induction. Let G(0),P . As per
assumption of this theorem, Λ

(
G(0),S,T s

)
= Λ(P,S,T s)⊂

C−. At each step k, Corollary 9 suggests a method, by
which we can find a controller that will stabilize at least one
of unstable modes of G(k). Specifically, with P replaced by
G(k) in Corollary 9, we can find a m(k) ∈{1,···,a}, and a
controller K(k)

m ∈T s+1
i
m(0) ,jm(0)

∩S, that will stabilize at least

one of unstable modes of G(k), thus:

ν(G(k+1)) = ν(Γ(G(k),K(k)
m )) ≤ ν(G(k))−1.

This K(k)
m satisfies (24) (with P replaced by G(k)), and thus

by Lemma 10, G(k+1) = Γ(G(k),K
(k)
m ), would have all of

its fixed modes in LHP, i.e., Λ
(
G(k+1),S,T s

)
∈ C−. This

guarantees that we can use Corollary 9 on G(k+1), if it has
at least one unstable mode. Since at each step, at least one
unstable mode is stabilized, P could be stabilized in at most
ν(P ) steps. The final K ∈ T d∩S that will stabilize P , is
equal to the summation of controllers at each step, i.e.:

K(σ)
(3)
=
∑

k
K(k)
m (σ). (31)

We can easily show that stability of all the fixed-modes of
P , Λ(P,S,T s)⊂C−, is also a necessary condition for the
existence of stabilizing controller, which is formalized in
the following theorem:

Theorem 12: A plant P is stabilizable by a controller
K∈T d∩S , if and only if Λ(P,S,T s)⊂C−.

Proof: The sufficiency part is done in Theorem 11.
For the necessity part note that by definition, fixed-modes
of P can not be moved by admissible static controllers, and
due to Theorem 4, they can not be moved by admissible
dynamic controllers either. Hence, if a stabilizing controller
is found for P , we must have Λ(P,S,T s)⊂C−, i.e.:

Λ(P,S,T s) 6⊂C− Thm.4⇒ Λ
(
P,S,T d

)
6⊂C−

bydef⇒ @K∈T d∩S s.t. ACL(P,K)⊂C−.

V. SYNTHESIS AND NUMERICAL EXAMPLE

In this section we provide an explicit algorithm to stabilize
a plant which has no unstable fixed modes, and run it
on one numerical example to illustrate its implementation.
Algorithm 1 is distilled from the steps taken in the paper
to prove the main theorem, and thus can almost certainly
be improved upon in several respects.

In Algorithm 1, D(k) is randomly chosen, and as stated in
remark 6, is a valid choice with probability one. This D(k)

must be chosen small enough (‖D(k)‖∞<γ(k)) such that the
total number of unstable modes would not increase when each
element of the sequence {D(k)

m }am=1 is closed around G(k). A
prior knowledge of such an upper bound on D(k) (γ(k)) is not
available and is hard to attain. This we consider making D(k)

small enough in a repeat - until loop such that the statement
in proof of Theorem 7.2 holds true. This iterative scaling
repeats itself when (13) is not met. In that case, perturbation
L̂(k) is chosen small enough (by a similar loop) so that it will
not make any modes of Ã(k)

11 −(L(k)+L̂(k))C̃
(k)
1 unstable.

The following numerical example will use Algorithm 1
to stabilize the plant P .

Example 13: Consider the following plant:

A=diag(2,3,5,−1,−1)

B=


0 0 3 0 2
0 0 0 1 0
0 0 2 0 5
1 0 0 0 0
0 2 0 0 0

, C=


4 0 8 0 0
0 1 0 0 0
6 0 3 0 0
0 0 0 5 0
0 0 0 0 6

, D=0.
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Algorithm 1 Finding a controller K∈T d∩S to stabilize P

Input: Plant P , information structure S
Output: Controller K∈T d∩S that will stabilize P
k←0, G(0)←P , K(σ)←0
while |Λ+(G(k))|≥1 do

choose a random D(k)∈T s∩S
D(k)←2D(k)

repeat
D(k)←D(k)/2
m(k)←a
while Λ+(Γ(G(k),D

(k)

m(k)−1
))∩Λ+(G(k))=∅ do

m(k)←m(k)−1
end while

until max
j=m(k)−1,m(k)

ν(Γ(G(k),D
(k)
j ))≤ν(G(k))

G
(k)

m(k)←eTj
m(k)

Γ(G(k),D
(k)

m(k)−1
)ei

m(k)

find a Kalman similarity transformation T (k) for G(k)

m(k)

name all the corresponding partitions by (̃·)(k)

find a F (k) to stabilize Ã(k)
11 −B̃

(k)
1 F (k)

find a L(k) to stabilize Ã(k)
11 −L(k)C̃

(k)
1

if Λ+(Ã
(k)
11 − B̃

(k)
1 F (k) − L(k)C̃

(k)
1 ) ∩(

4⋃
i=2

Λ+(Ã
(k)
ii )

)
6=∅ then

choose a random L̂(k)

while |Λ+

(
Ã

(k)
11 −(L(k)+L̂(k))C̃

(k)
1

)
|≥1 do

L̂(k)← L̂(k)/2
end while
L(k)←L(k)+L̂(k)

end if

K(k)←

[
Ã

(k)
11 −B̃

(k)
1 F (k)−L(k)C̃

(k)
1 L(k)eTj

m(k)

−ei
m(k)

F (k) D
(k)

m(k)−1

]
K(σ)←K(σ)+K(k)(σ)
G(k+1)←Γ(G(k),K(k))
k←k+1

end while
return K(σ)

Let controller information constraint be given by: Adm(S)=
{(1, 1), (3, 1), (4, 1), (5, 2), (1, 3), (3, 3), (4, 3), (5, 4), (5, 5)}.
This plant has fixed mode Λ (P,S,T s) = {−1}. If we
follow Algorithm 1 to stabilize P , then closed-loop modes[
−0.5 −1 −1 −1.5 −2 −2.5 −3 −3.5

]T
are

achieved by the following controller:
14.92 −460.41 −4.66
0.37 −24.44 0.75
22.92 −763.84 −25.42

03×1

317.12
27.44
405.62

03×3

01×3
01×3
01×3
01×3

3.90 −71.64 −7.45

0.09
0

0.43
0.09
0

05×1 05×3


An alternative approach is taken in [2], in which, at each

step, a (possibly dynamic) stabilizing controller is applied at
the next diagonal element of the controller, and it is shown that
by adding stabilizing controllers at each step, the set of (possi-

bly unstable) fixed modes are reduced, until the last step where
the remaining fixed modes must be necessarily stable. Apply-
ing method of [2] on this plant, would result in a stabilizing
controller of order 7, as compared to 3 here. An explanation
could be that in [2], a (possibly dynamic) stabilizing controller
is applied at each of the elements, resulting in abundant of
controller states, whereas in here, only for each unstable mode,
a stabilizing controller (not necessarily of order 1) is needed.

If we look at each of the nine SISO maps {Pimjm}9m=1,
then the union of controllable and observable modes of all
these SISO maps are {2,5}, which does not contain the
unstable mode 3. This shows that if we follow Algorithm
1, then a static gain (the Dm−1 of Figure 2) may be
necessary before an observer-based controller can be used
to stabilize that mode. This is counter-intuitive compared
to the centralized case where a stabilizing observer-based
controller would have zero static gain.

VI. CONCLUSION

We revisited, verified, and generalized classic work in
the stabilizability of decentralized systems. In a preceding
paper, we generalized the notion of fixed modes to arbitrary
information structure, and provided a rigorous inductive
proof that plant modes which cannot be moved by static LTI
controllers with the prescribed structure cannot be moved by
dynamic LTI controllers either. In this paper, we addressed the
placement of the modes which are not fixed. We showed that
they can be moved to within a chosen accuracy of any desired
pole locations, thus similarly solidifying and generalizing the
other main result of [1]. Combining these results, we have
shown that having fixed modes in the LHP w.r.t. static LTI
controllers of a given information structure is necessary and
sufficient for stabilizability by dynamic LTI controllers with
the same structure. We lastly presented an explicit algorithm
for finding such a stabilizing decentralized controller.
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