
Improving ADMM-based Optimization
of Mixed Integer Objectives

Alborz Alavian
Department of Electrical and Computer Engineering

University of Maryland
College Park, Maryland 20742, USA

alavian@umd.edu

Michael C. Rotkowitz
Instutite for Systems Research and

Department of Electrical and Computer Engineering
University of Maryland

College Park, Maryland 20742, USA
mcrotk@umd.edu

Abstract—We consider a class of mixed integer programs
where the problem is convex except for a vector of discrete vari-
ables. Two methods based on the Alternating Direction Method of
Multipliers (ADMM) are presented. The first, which has appeared
in the recent literature, duplicates the discrete variable, with
one copy allowed to vary continuously. This results in a simple
projection, or rounding, to determine the discrete variable at
each iteration. We introduce an alternate method, whereby part
of the objective is replaced by a new variable instead. When the
objective satisfies a certain condition, this allows the update of
the discrete variables to be handled separately for each one, thus
maintaining linear complexity of this update, while incorporating
some of the objective into the update. Initial comparisons on
examples for which both methods are applicable show that the
latter exhibits clear improvements in both performance and run-
time.

I. INTRODUCTION

Mixed Integer Programs (MIP) are hard problems in gen-
eral with much interest in finding bounds or approximate
solutions for them. These include linear program (LP) and
Semidefinite relaxations (SDP). The LP methods consider a
linear relaxation of the integer variable to obtain a lower
bound, and its projection to the discrete space for an upper-
bound, whereas SDP relaxations consider the trace of a rank 1
matrix instead of the terms that involve products of the integer
variables [1], [2]. Tighter relaxations can be obtained by lift-
and-project methods, that introduce new auxiliary variables to
transform the nonlinear integer constraints into a form with
linear constraints in a higher dimension, and then solve the
convex problem in the higher dimension to obtain a lower-
bound [3], [4]. When there would also be higher degree
non-convex objectives functions or constraints other than the
integer constraint, one can also consider using polynomial
optimization methods to obtain such lower-bounds [5]–[7]. We
are interested in upper-bounds for MIP problems in this paper
and refer the reader to the above works for certificates of the
optimality.

The so called relax-and-round algorithms replace the dis-
crete variable with its continuous counterpart and solve the
obtained convex program to obtain a lower-bound on the exact
optimal value. Projection of this optimal solution onto the
discrete set will then give an upper-bound. This projection

This material is based upon work supported by the National Science
Foundation under Grant No. 1351674.

would simply be a rounding step toward the closest discrete
value in each dimension. It has been suggested in [8] that
one can use the information from the dual problem through
Alternating Direction Method of Multipliers (ADMM) to do
several passes of such steps, which will result in a better upper-
bound. Although ADMM has been originally developed for
convex problems [9], there has been much recent interest in
applying it to the non-convex problems, with some analysis of
convergence available in some cases [10]. This has led to a
broad class of heuristics with great flexibility for problems
that were originally very hard to solve. In particular, the
binary quadratic problems (BQP) has attracted much attention
and authors of [8] have demonstrated their algorithm for this
class of problems, which can simply be extended to a more
generalized setting as in [11]. Also, [12] has considered using
ADMM for the binary constraints, and has compared it to
another novel heuristic that encourages finding binary values
by considering piecewise-linear functions that penalizes non-
binary values. As this piecewise-linear function would be
locally convex, better and more flexible sequential algorithms
can then be developed based on this heuristic.

We will consider a variant of such ADMM based algo-
rithms in this paper. Instead of only replacing the discrete
variable by a relaxed continuous one as in the relax-and-round
algorithms, we will try to capture as a generalized part of the
objective as possible through an auxiliary equality constraint.
This will create the base formulation for the ADMM algorithm.
The algorithm then finds the best discrete variable in each step
by checking the captured part values at the discrete values,
rather than rounding. We will demonstrate when this last part
is possible through a linear number of function evaluations in
the dimension of the discrete variable, versus an exponential
number that corresponds to the exhaustive search. This has
shown significant improvements when the objective is not
necessarily symmetrical around its optimal point.

One main motivation behind this work was approximating
the decentralized assignability measure of [13] that quantifies
the robustness of a linear time invariant dynamical systems in
the decentralized settings. This metric involves both continuous
and binary variables that appear affinely in a non-convex
objective function (a particular singular value of a matrix).
We noticed that a preliminary version of our algorithm in
this paper could be applied to the aforementioned optimization
problem [14]. This method was tracking the actual metric very

978-1-5090-4780-2/17/$31.00 ©2017 IEEE

closely even when we had to use it in conjunction with other
convex heuristics for the objective function itself. This led to
the interesting question of whether this behavior is what one
could expect more generally, and is what we study in this
paper.

The organization of this paper is as follows. We will con-
struct the problem setup in Section II and review a very closely
related framework in Section III. We will then demonstrate our
algorithm in Section IV, discuss when and how it could capture
the effect of the discrete variables better in Section IV-A. We
will finally investigate this method through a set of numerical
examples in Section IV-B.

II. PROBLEM FORMULATION

We formulate the problem of interest in this section. We
consider objectives that have mixed discrete and continuous
parts in a form that we will focus on in this paper here
and then discuss the generalizations and constraints wherever
applicable.

To this end we will first illustrate the space in which the
variables would lie and then state the optimization problem of
interest. Denote the {0, 1}-valued indicator function by 1(·),
the set of real numbers by R, the extended real numbers by
R̄ = R∪{±∞}, and the set of binary numbers by B = {0, 1}.
Also denote any finite subset of the reals by Z , i.e.:

Z , {α1, · · · , α|Z|},
where |Z| < ∞, and αi ∈ R, for i ∈ {1, · · · , |Z|}. Further-
more, denote the Cartesian product of m possibly different
instances of such sets by:

Z(m) , Z1 × · · · × Zm.
We will denote the projection of a real variable y ∈ Rm onto
the set Z(m) by:

ΠZ(m) (y) = [ΠZ1 (y1) · · · ΠZm (ym)]
T
,

where
ΠZi

(yi) = arg min
z∈Zi

‖yi − z‖2,

for i ∈ {1, · · · ,m}.
Remark 1: In its simplest form, all such Zi could be taken

the same as the binary set, i.e., Zi = B for every i ∈
{1, · · · ,m}, which would result in Z(m) = Bm, for which the
projection would be simply picking the closest of either 0 or 1
to each element of the vector y, i.e., ΠB (yi) = 1(yi > 0.5).

Consider the following optimization problem:

minimize f(g(x, z)), (1)

with variables x ∈ Rn and z ∈ Z(m). Throughout the rest of
this paper, the inner function g(·, ·) is from Rn×Z(m) to Rp.
The extended function f(·) is from Rp to R̄ and is assumed
to be convex in its variable.

We will discuss what assumptions we need on the func-
tion g. We will clearly state these assumptions and their im-
plications wherever they are imposed in the following sections.

Even without any further constraints, and even if f ◦ g
is convex, this would typically be a hard problem due to the
presence of the discrete variable z.

III. A ROUND-OFF BASED ALGORITHM

We will reformulate a class of relax-and-round heuristics
for mixed integer programs in this section. We will then discuss
how a simple modification to this algorithm would most likely
enhance it for the considered class of functions.

We can rewrite the optimization problem (1) with an extra
constraint such that instead of having the discrete variable in
the objective, we will have it in the constraints:

minimize f(g(x, y))
subject to y = z,

(2)

with variables x ∈ Rn, y ∈ Rm and z ∈ Z(m).

The augmented Lagrangian for this problem, for any pa-
rameter ρ > 0, can be written as:

Lρ(x, y, z, ν) = f(g(x, y)) + νT (y − z) +
ρ

2
‖y − z‖22,

which with some basic rearrangement of the term and a change
of variable µ = (1/ρ)ν can be equivalently written as:

Lρ(x, y, z, µ) = f(g(x, y)) +
ρ

2
‖y − z + µ‖22 −

ρ

2
‖µ‖22.

Then, the ADMM algorithm would consist of optimization
jointly over the variables (x, y), projecting onto the discrete
set Z(m), and the dual update:

(x(k), y(k)) = arg min
x∈Rn

y∈Rm

Lρ(x, y, z
(k−1), µ(k−1))

z(k) = ΠZ(m)

(
y(k) + µ(k−1))

µ(k) = µ(k−1) + y(k) − z(k).

(3)

The second and third steps of the ADMM are straightfor-
ward, however the first step requires convexity of f(g(x, y))
in (x, y), which in turn could be guaranteed by the following
assumption:

Assumption 2: Throughout the rest of this section we will
assume that g(·, ·) is jointly affine in its variables.

This heuristic was considered for the binary quadratic prob-
lems in [8], and has been generalized through the same way to
allow for some other kinds of mixed integer programs in [11].
The objective of [8] has the form:

f(v) = 1/2 vTPv + qT v, (4)

with positive semidefinite P , which can be matched to (2) by
choosing:

g(x, z) = z, (5)

which indicates that there is no continuous variable. Also it is
noteworthy that considering another affine function for g(x, z)
other than the one mentioned above, such as g(x, z) = Az+b,
would be in effect the same as a new quadratic function
with P being changed to ATPA and q to AT q + ATPb,
while still having g(x, z) = z. Although this suggests that
considering the composition of functions in (2) might not be
fundamentally different in the quadratic case as it would yield
another similar quadratic function, this is not what one would
generally observe in non-quadratic cases. We will describe this
aspect in the next section.

IV. MAIN IDEA

We will describe the main idea in this section. We will
first lay out the modification to the ADMM algorithm in the
previous section and then describe its advantages. We will
begin by putting a different assumption on the function g(·, ·).
This assumption is more restrictive than Assumption 2 in
the sense that it requires partial separability over the discrete
variable, but is also more general in allowing non-linear
dependencies on the discrete variables. Particularly we will
require that each element of g would depend on at most one
discrete variable, but not necessarily in an affine manner:

Assumption 3: Throughout the rest of this section we will
assume that g : Rn × Z(m) 7→ Rp would be affine in its con-
tinuous variable, and further is such that for all i ∈ {1, · · · , p}
we have that:

gi(x, z) = g̃i(x, zli),

for some li ∈ {1, · · · ,m} and g̃i : Rn × Zli 7→ R, and for
all x ∈ Rn and z ∈ Z(m).

This assumption can be equivalently expressed in a more
explicit way as in the following remark:

Remark 4: Assumption 3 is equivalent to the following
form for each element of the function g, i.e., for all i ∈
{1, · · · , p}, we have that:

gi(x, z) = (ai(zli))
T
x+ bi(zli),

for some li ∈ {1, · · · ,m}, and where ai(·) and bi(·) are
possibly nonlinear functions of the following form:

ai : Zli 7→ Rn
bi : Zli 7→ R.

With this assumption in place, we will consider the ADMM
algorithm that will be based on the following equivalent form
of (1):

minimize f(v)
subject to v = g(x, z),

(6)

with variables x ∈ Rn, v ∈ Rp and z ∈ Z(m).

The augmented Lagrangian for this problem can be written
as:

L̃ρ(x, v, z, µ) = f(v) +
ρ

2
‖v − g(x, z) + µ‖22 −

ρ

2
‖µ‖22,

for which the ADMM algorithm would be:

(x(k), v(k)) = arg min
x∈Rn

v∈Rp

L̃ρ(x, v, z
(k−1), µ(k−1))

z(k) = arg min
z∈Z(m)

‖v(k) − g(x(k), z) + µ(k−1)‖22

µ(k) = µ(k−1) + v(k) − g(x(k), z(k)).
(7)

The first step of this algorithm would be a convex minimization
step due to the convexity of f(·) and Assumption 3. The second
step of this algorithm is what makes this algorithm different
from (3). In particular, this step would not correspond to a
similar projection as in (3), though it would be computationally
tractable due to the assumption that is put on dependency on
the discrete variable in g(·, ·) (Assumption 3). This is explicitly
stated in the following theorem:

Theorem 5: Given a function g that satisfies Assumption 3,
the optimal z in (7) can be equivalently obtained by inde-
pendently solving for each of the discrete variables, i.e., for
all j ∈ {1, · · · ,m} we have that:

zj
(k) = arg min

zj∈Zj

∑
{i | li=j}

(
vi

(k)−g̃i(x(k), zj)+µi(k−1)
)2
.

(8)

Proof: We have that:

z(k) = arg min
z∈Z(m)

L̃ρ(x
(k), v(k), z, µ(k−1))

= arg min
z∈Z(m)

‖v(k) − g(x(k), z) + µ(k−1)‖22

= arg min
z∈Z(m)

p∑
i=1

(
vi

(k) − g̃i(x(k), z) + µi
(k−1))2

= arg min
z∈Z(m)

p∑
i=1

(
vi

(k) − g̃i(x(k), zli) + µi
(k−1))2

= arg min
z∈Z(m)

m∑
j=1

∑
{i | li=j}

(
vi

(k) − g̃i(x(k), zli)

+ µi
(k−1)

)2
=⇒
zj

(k) = arg min
zj∈Zj

∑
{i | li=j}

(
vi

(k) − g̃i(x(k), zj) + µi
(k−1)

)2
,

where the second equality follows because that is the only
term involving the discrete variable z, the third is due to the
fact that ‖·‖22 also separates in its elements, the forth is due to
Assumption 3, and the fifth is an equivalent representation of
the sum from i = 1 to p.

This alternative approach makes the computation of z-update
minimization a tractable one whenever Assumption 3 is in
place. This is described in more details in the following
remark:

Remark 6 (Per-iteration complexity): The z-update in (7)
requires |Z(m)| = |Z1| × · · · × |Zm| function evaluations (for
instance, 2m in the binary case), whereas when Assumption 3
is satisfied, solving for z by (8) only requires

∑m
j=1|Zj |

function evaluations (for instance, 2m in the binary case). This
alternative step has linear complexity, and is comparable in
complexity to the projection step in (3).

Remark 7 (Matrix variables): This can be easily general-
ized to handle matrix variables by replacing the 2-norm with
the Frobenius norm, which corresponds to the standard inner
product in the matrix spaces. This was what we indeed first
considered in [14].

A. Discussions

We will provide more intuitions on the suggested modifi-
cations to the ADMM-based algorithm described above in this
section.

In (3), the discrete variable is replaced by a continuous
one, and the solution of the primal optimization step that is
solved with these continuous variables is then projected onto
the discrete set in the hope that this projection would still
minimize f(g(x(k), z)) for the discrete variable z, which might

be not the case in general. The quadratic objective (4) is sym-
metrical around its optimal point in each of the directions, and
thus the projection would be a best choice when one requires
separability in the z-update. In other words, as illustrated in
Figure 1, when we keep all the variables fixed except for a
single one-dimensional discrete variable, the discrete value (0
or 1 in here) that minimizes a quadratic function is indeed the
one closest to its critical point (0.4 here).

0 0.4 0.5 1

•

•

•

Fig. 1: A quadratic function in which the projection would be
a best choice in a single dimension

However, as illustrated in Figure 2, this special property
might not be in place for a wide variety of convex functions
such as piecewise linear, sum of logarithmics or sum of
exponential functions. The proposed ADMM-based method
also separates in the z-update, and compared to rounding
the solution of the relaxed problem, it will actually plug in
the binary values and picks the best among them, making
it more likely that it would be a better choice for non-
quadratic functions. This would be further investigated through
numerical examples in the next section.

0 0.42 0.5 1

•
•

•

Fig. 2: A logarithmic function for which the projection would
not be a best choice even in a single dimension

B. Numerical Examples

We will investigate the performance of the suggested
algorithm versus the one based on a relax-and-round method
here in this section.

We will compare the algorithms in (3) and (7) for random
instances of a problem with fixed dimensions, and compare
the run-time and the value that each algorithm obtains in our
first example:

Example 8: Consider the optimization problem (1) with a
single continuous variable (n = 1) and where the discrete vari-
ables are all in the binary space (Zi = B, for i = 1. · · · ,m),

i.e., x ∈ R and z ∈ Bm. Let g(·, ·) be given as:

g(x, z) = Dz + b+ 1x, (9)

where D is a diagonal matrix in Rm×m, b ∈ Rm and 1 is a
vector of all ones of compatible dimension. Let p = m and
also take f(·) as:

f(v) =

m∑
i=1

−a1 log(a0vi+ c1)−a2 log(−a0vi+ c2), (10)

where a0, a1, a2, c1, and c2 are all positive real numbers,
and c1 and c2 are such that [0, 1] is in the domain. This function
is convex in its domain and resembles the one illustrated in
Figure 2. In this example we consider two cases of m = 10
and m = 100, for each we generate 20 instances of (9) with
random b and diagonal D of compatible dimension, and solve
the optimization problem (1) by methods (3) and (7), with ρ
being fixed to 0.5.

Figure 3 shows the optimal value obtained from the
rounding-off method of (3) versus the direct search in (7)
for m = 10 and 100. The x-axis corresponds to the round-
off method of (3) and the y-axis is for the direct search of (7).
The blue dots indicate when direct search was faster and the
red dots indicate when the rounding-off was faster. Each dot
below the y = x solid line means that the direct search has
obtained a lesser value, as desired. This means that the direct
search method of (7) has shown better performance in the 20
considered samples when m = 100, and mostly when m = 10.

-42.71 -42.70 -42.69 -42.68 -42.67 -42.66 -42.65 -42.64 -42.63 -42.62 -42.61

-42.71

-42.70

-42.69

-42.68

-42.67

-42.66

-42.65

-42.64

-42.63

-42.62

-42.61

(a) For m = 10

-426.90 -426.85 -426.80 -426.75 -426.70 -426.65 -426.60 -426.55 -426.50

-426.90

-426.85

-426.80

-426.75

-426.70

-426.65

-426.60

-426.55

-426.50

(b) For m = 100

Fig. 3: Comparison of the optimal values

Next, we plot the computation time required to get to these
values in Figure 4. Similar to the previous figure, every point
below the y = x line indicates that the direct search has taken
less time, as desired. Iteration counts that each of the methods
take to get to these points are also illustrated in Figure 5.

Next, we inspect how these two methods compare to the
exact solution. When m = 10, the problem is small enough
that we can find the exact solution by exhaustive search
over 210 instances of (1) with fixed z in each instance. Name
the binary solution that corresponds to the exact exhaustive
search by z(ex), the one that corresponds to the rounding
method of (3) by z(round), and the one that corresponds to
the direct search method of (7) by z(direct). How much these
binary values differ is illustrated in Figure 6, where the x-
axis denotes the sample index, the blue dots show how many
elements z(ex) and z(direct) are far apart (‖z(direct)−z(ex)‖1), and

0 5 10 15 20 25 30

0

5

10

15

20

25

30

(a) For m = 10

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

70

80

(b) For m = 100

Fig. 4: Comparison of the computational time (in seconds)

0 5 10 15 20

0

5

10

15

20

(a) For m = 10

0 5 10 15 20

0

5

10

15

20

(b) For m = 100

Fig. 5: Iterations to the optimal point

the red dots show the same for z(round), i.e., ‖z(round)− z(ex)‖1.
As illustrated in Figure 6, method of (7) has recovered closer
discrete variables to the exact solution in most cases, although
it might happen that in a few cases rounding off would be
better (as in sample 2).

0 5 10 15 20

0

1

2

3

4

5

6

Fig. 6: Comparison to the exact solution when m = 10

In the next example we will vary the problem size and
inspect how the two methods compare.

Example 9: We consider the optimization problem (1)
again, and take f(·) and g(·, ·) as (10) and (9). In this example,
we will vary m from 5 to 100. For each m, we will generate 20
instances of (9) with random b and diagonal D of compatible

dimension, and then plot the optimal value, computational
time, and the iterations to the optimal point.

Figure 7 plots the the difference of the optimal value
obtained by rounding-off method of (3) from the direct
search (7). The minimum of this difference (purple line) is
almost always positive, except for 39 times out of all 1920
simulations (2%). This indicates that the method of (7) has
mostly performed better for the considered functions, which
satisfy Assumption 3. The black line denotes the average, the
solid green denotes the median, whereas the dashed greens
denote the 5% and 95% percentiles for this difference.

0 20 40 60 80 100

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

Fig. 7: Various statistics for the difference of the optimal values
of the two methods

Figure 8a compares the time required for each of these
methods, and Figure 8b illustrates the iterations required
to reach the optimal point. As shown in these figures, the
direct search exhibits better performance on average. Also,
the number of iterations required to get to a local solution
decreases for the direct search as the problem size gets bigger.
This could be the case as the effect of the single continuous
variable x decreases as the dimension of the problem increases,
and hence the initial iterations that directly solve for the binary
variables would be more crucial as m increases.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

(a) Time to the optimal point

0 20 40 60 80 100

0

5

10

15

20

(b) Required iterations

Fig. 8: Time and iterations required to obtain a local solution

Finally we compare the exact solution to the these two
methods. This was only an option when the problem size was

small enough (m < 15). We see that, as illustrated in Figure 9,
direct search solutions are closer to the exact value.

4 6 8 10 12 14 16

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fig. 9: Comparison to the exact solution for 5 ≤ m ≤ 14

V. CONCLUSION

We have considered mixed integer programs where the
problem is convex except for the integer constraint. We dis-
cussed a new heuristic that will use an auxiliary equality
constraint to capture composite part of the objective. We
have then used ADMM to derive a new algorithm based on
this formulation that will be better suited for asymmetrical
objectives, and have shown that we can find the best discrete
variable corresponding to the replaced part in linear time
when that part is separable in the discrete variable. We have
investigated this method numerically by comparing it to a
relax-and-round algorithm, and have seen improvements in
terms of the optimal value, optimal discrete point, and the
run-time and have seen improvements in

REFERENCES

[1] S. Boyd and L. Vandenberghe, “Semidefinite programming relaxations
of non-convex problems in control and combinatorial optimization,”
in Communications, Computation, Control, and Signal Processing.
Springer, 1997, pp. 279–287.

[2] F. Alizadeh, “Interior point methods in semidefinite programming
with applications to combinatorial optimization,” SIAM Journal on
Optimization, vol. 5, no. 1, pp. 13–51, 1995.

[3] L. Lovász and A. Schrijver, “Cones of matrices and set-functions and
0-1 optimization,” SIAM Journal on Optimization, vol. 1, no. 2, pp.
166–190, 1991.

[4] S. Burer and D. Vandenbussche, “Solving lift-and-project relaxations
of binary integer programs,” SIAM Journal on Optimization, vol. 16,
no. 3, pp. 726–750, 2006.

[5] J. B. Lasserre, “Global optimization with polynomials and the problem
of moments,” SIAM Journal on Optimization, vol. 11, no. 3, pp. 796–
817, 2001.

[6] ——, “Semidefinite programming vs. LP relaxations for polynomial
programming,” Mathematics of operations research, vol. 27, no. 2, pp.
347–360, 2002.

[7] H. D. Sherali and W. P. Adams, “A hierarchy of relaxations between the
continuous and convex hull representations for zero-one programming
problems,” SIAM Journal on Discrete Mathematics, vol. 3, no. 3, pp.
411–430, 1990.

[8] R. Takapoui, N. Moehle, S. Boyd, and A. Bemporad, “A simple effective
heuristic for embedded mixed-integer quadratic programming,” in Proc.
American Control Conference, 2016, pp. 5619–5625.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[10] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in
nonconvex nonsmooth optimization,” preprint arXiv:1511.06324, 2016.

[11] R. Takapoui, N. Moehle, S. Boyd, and A. Bemporad, “A general system
for heuristic solution of convex problems over nonconvex sets,” arXiv
preprint:1601.07277, 2016.

[12] A. Yadav, R. Ranjan, U. Mahbub, and M. Rotkowitz, “New methods
for handling binary constraints,” in Proceedings of the 54th Annual
Allerton Conference on Communication Control and Computing, 2016,
pp. 1074–1080.

[13] A. Vaz and E. Davison, “A measure for the decentralized assignability
of eigenvalues,” Systems and Control Letters, vol. 10, no. 3, pp. 191 –
199, 1988.

[14] A. Alavian and M. C. Rotkowitz, “An optimization-based approach
to decentralized assignability,” in Proc. American Control Conference,
2016, pp. 5199–5204.

