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74.1 Introduction

This chapter addresses the problem of decentralized control, where multiple controllers have
access to different information, but need to achieve or optimize a global objective. Most of
conventional controls analysis breaks down when information is decentralized, even in the
simplest possible scenarios [Wit68].

This chapter addresses decentralized control problems in a simple unified framework.
This framework is introduced in Section 74.2, where we see that a standard controls frame-
work may be utilized, but with the addition of a particular constraint on the controller that
needs to be designed. Section 74.3 then briefly reviews the parametrization of stabilizing
controllers for centralized control, when one does not have this decentralization constraint.

Section 74.4 introduces quadratic invariance, an algebraic condition under which decen-
tralized control problems may be cast as convex optimization problems. Section 74.5 looks
at particular classes of problems to see when this condition holds, and to get some intuition
behind when decentralized control problems may be tractable. Section 74.6 then discusses
the perfectly decentralized control problem, a problem which is often of interest yet which
typically does not satisfy this condition. Finally, while the rest of this chapter focuses on
the case where both the system to be controlled and the possible controllers are all linear,
Section 74.7 discusses some related results for nonlinear control.
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74.2 Framework and Setup

We introduce a unified framework for studying optimal feedback control problems subject
to decentralized information constraints.

74.2.1 Standard framework

We first review a standard framework for centralized control synthesis.
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FIGURE 74.1 Standard feedback control framework

Figure 74.1 represents the standard design framework of modern control theory, and is
used in many other chapters. The signal w represents the vector of exogenous inputs, those
the designer has no control over, such as wind gusts if one is considering an example in
aerospace, and z represents everything the designer would like to keep small, which would
typically include deviations from a desired state or trajectory, or a measure of control effort,
for example. The signal y represents the vector of measurements that the controller K has
access to, and u is the vector of inputs from the controller that feed back into the plant. The
plant is subdivided into four blocks which map w and u into z and y. The block which maps
the controller input u to the measurements y is simply referred to as G, since it corresponds
to the plant of classical control analysis, and so that we can later refer to its subdivisions
without any ambiguity.

The design objective is to construct a controller K to keep a measure of the size of the
mapping from w to z, known as the closed-loop map, as small as possible. There are many
ways one can measure the size of a mapping, and thus this basic setup underpins much of
modern controls including H2-control and H∞-control. In this framework, a decentralized
information structure may be viewed as a constraint on the structure of the controller K,
as now illustrated by examples.

74.2.2 Information constraint

We now illustrate why, in this framework, decentralization may be simply encapsulated as
a constraint that the controller lie in a particular subspace.
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FIGURE 74.2 Perfectly decentralized control

The diagram in Figure 74.2 represents three different subsystems, each of which may
effect its neighbors, and each of which has its own controller, which only has access to
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measurements coming from its own subsystem. In this case, if we look at the system as a
whole, we need to design a controller K that can be written as
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since each controller input may only depend upon the measurement from its corresponding
subsystem. In other words, we need to design the best possible K which is block diagonal.
The overall problem can be viewed as minimizing the size of the closed-loop map subject
to the additional constraint that K ∈ S, where S is the set of all block diagonal controllers.
This concept readily extends to any type of structural constraint we may need to impose
in formulating an optimal control problem for controller synthesis. For instance, if in the
above example, each controller were able to share information with its neighbors, then we
would end up with a constraint set S which is tri-diagonal. In general, the ijth component
of the controller is held to 0 if the ith controller is unable to see the jth measurement yj .

FIGURE 74.3 Network with delays

If controllers were instead allowed to communicate with each other, but with some
delays, this too could be reflected in another constraint set S. This situation is represented
in Figure 74.3, where the controller for a given subsystem i can see the information from
another subsystem j after a transmission delay of tij . In this case, if we look at the system
as a whole, we need to design a controller K that can be written as
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where Dtij represents a delays of tij , and K̃ij represents the parts of the controller which
we are free to design, since each subsystem controller must wait the proscribed amount of
time before it can use information from each of the other controllers.

The set S above is called the information constraint, as it captures the information
available to various parts of the controller. The overarching point is that the objective of
decentralized control may be considered to be the minimization of a closed-loop map sub-
ject to an information constraint K ∈ S. The approach is extremely broad, as it seamlessly
incorporates any type of decentralization, any control objective, and heterogeneous subsys-
tems. It has thus come to be accepted as the canonical problem one would like to solve in
decentralized control.
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74.2.3 Problem formulation

The mapping from w to z that we wish to keep small in Figure 74.1, the closed-loop map,
can be written as f(P,K) = P11 + P12K(I − GK)−1P21. The problem that we would like
to address may then be formulated as:

minimize ‖f(P,K)‖

subject to K stabilizes P

K ∈ S

(74.1)

The norm (‖·‖) is any appropriate system norm, chosen based on the particular perfor-
mance objectives, which could be the H2-norm or H∞-norm as described in detail in other
chapters. The information constraint S is the subspace of admissible controllers which en-
capsulates the decentralized nature of the system, as exemplified above. The stabilization
constraint is needed in the most typical case where the signals lie in extended spaces and
the plant and controller are rational proper systems whose interconnections may thus be
unstable. It may not be necessary, or another technical condition may be necessary such
as the invertibility of (I − GK), for other spaces of interest, such as Banach spaces with
bounded linear operators [RL02, RL06a].

74.3 Stabilizing Controller Parametrization

If the plant to be controlled is stable, we could use the following change of variables

Q = −K(I −GK)−1 ⇐⇒ K = −Q(I −GQ)−1 (74.2)

and then allowing the new parameter Q to be stable is equivalent to the controller K stabi-
lizing the plant P , and the set of all achievable closed-loop maps (ignoring the information
constraint) is then given as

{P11 − P12QP21 | Q stable}. (74.3)

This is generalized by the Youla-Kucera or YJBK parametrization [YJJ76], which gives
a similar change of variables for unstable plants such that allowing the new (Youla) pa-
rameter Q to vary over all stable systems is still equivalent to considering all stabilizing
controllers K, and the set of all achievable closed-loop maps is then given by

{T1 − T2QT3 | Q stable} (74.4)

where T1, T2, T3 are other stable systems.
We see that these parametrizations allow the set of achievable closed-loop maps to be

expressed as an affine function of a stable parameter, and thus allow our objective function
in our main problem (74.1) to be cast as a convex function of that parameter. However, the
information constraint K ∈ S will typically not be simple to express in the new parameter,
and this will ruin the convexity of the optimization problem.

74.4 Quadratic Invariance

We have seen that we can employ a change of variables that will make our objective convex,
but that will generally cause the information constraint to no longer be affine. We thus seek
to characterize problems for which the information constraint may be written as an affine
constraint in the Youla parameter, such that a convex reformulation of our main problem
will result.

The following property, first introduced in [RL02], provides that characterization.
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Definition 1 The set S is quadratically invariant with respect to G if

KGK ∈ S for all K ∈ S

In other words, given any admissible controller K, the composition KGK has to be
admissible as well. When this condition holds, it follows that a controller being admissible
is further equivalent to the linear-fractional transformation we encountered earlier lying in
the constraint set [RL06a, RL06b]:

K ∈ S ⇐⇒ K(I −GK)−1 ∈ S (74.5)

We can see immediately from (74.2) that for the stable case this results in the equivalence
of enforcing the information constraint on the controller or on the new parameter:

K ∈ S ⇐⇒ Q ∈ S (74.6)

and it can be shown that when the plant is unstable, another change of variables can be
made such that this equivalence still holds [RL06b].

Thus when the information constraint S is quadratically invariant with respect to the
plant G, the optimal decentralized control problem (74.1) may be recast as the following:

minimize ‖T1 − T2QT3‖

subject to Q stable

Q ∈ S

(74.7)

which is a convex optimization problem.

74.5 Examples

This section looks at particular classes of information constraints to see when this quadratic
invariance condition holds, to identify those decentralized problems which are amenable to
convex synthesis. We see that this algebraic condition often has intuitive interpretations for
specific classes of problems.

74.5.1 Structural Constraints

We first look at structural constraints, or sparsity constraints, where each sub-controller
can see the measurements from some subsystems but not from others. This structure can
be represented with a binary matrix Kbin. For instance, Kbin

kl = 1 if the kth control input
uk is allowed to be a function of the lth measurement yl, and Kbin

kl = 0 if it cannot see
that measurement. The information constraint S is then the set of all controllers which
have the structure proscribed by Kbin; that is, all of the controllers such that none of the
sub-controllers use information which they cannot see.

A binary matrix Gbin can similarly be used to give the structure of the plant. For
instance, Gbin

ij = 1 if Gij is non-zero and the ith measurement yi is affected by the jth

control input uj, and Gbin

ij = 0 if it is unaffected by that input. Given this representation
of the structure of the plant and the controller constraints, we have the following result:

S is quadratically invariant with respect to G if and only if

Kbin

ki Gbin

ij Kbin

jl (1−Kbin

kl ) = 0 for all i,j,k,l. (74.8)

Figure 74.4 illustrates this condition. The condition in (74.8) requires that, for arbitrary
i, j, k, l, if the three blocks on the bottom are all non-zero (or allowed to be chosen non-zero),
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FIGURE 74.4 Structural quadratic invariance

then the top block must be allowed to be non-zero as well. In other words, if there is an
indirect connection from a measurement to a control input, then there has to be a direct
connection as well.

When this condition is met, the problem is quadratically invariant, and we can recast
our optimal decentralized control problem as the convex optimization problem in (74.7).

74.5.2 Symmetry

We briefly consider the problem of symmetric synthesis. Suppose that we need to design
the best symmetric controller; that is, the best controller such that Kkl = Klk for all k, l,
and that the information constraint S is the set of all such symmetric controllers. If the
plant is also symmetric; that is, if Gij = Gji for all i, j, then KGK is symmetric for any
symmetric K. Thus, KGK ∈ S for all K ∈ S, the problem is quadratically invariant, and
the optimal symmetric control problem may be recast as (74.7).

74.5.3 Delays

We now return to the problem of Figure 74.3, where we have multiple nodes/subsystems,
each with its own controller, and each subsystem i can see the information from another
subsystem j after a transmission delay of tij .

We similarly consider that the inputs to a given subsystem j may affect other subsys-
tems after some delay, and denote the amount of time after which it may affect another
subsystem i by the propagation delay pij .

The overall problem of controlling such a network with propagation delays, with con-
trollers that may communicate with transmission delays, is depicted in Figure 74.5.

FIGURE 74.5 Network with delays

When this problem is tested for quadratic invariance, one first finds that the following
condition is necessary and sufficient:

tki + pij + tjl ≥ tkl for all i, j, k, l (74.9)
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This is reminiscent of condition (74.8) for structural constraints, as it similarly requires that
any direct path from yl to uk must be at least as fast as any indirect path through the plant.
This condition can be further reduced to a very simple intuitive condition [RCL05], as long
as we may assume that the transmission delays themselves satisfy the triangle inequality;
that is

tki + tij ≥ tkj for all k, i, j. (74.10)

This is typically a very reasonable assumption, as it states that information is transmitted
between nodes in the quickest manner available through the network. If the inequality failed
for some k, j, one would want to reroute the transmissions from j to k along the faster route
such that the inequality would then hold.

If the triangle inequality among transmissions does hold, then condition (74.9), and thus
quadratic invariance, is reduced to simply:

pij ≥ tij for all i, j. (74.11)

In other words, for any pair of nodes, information needs to be transmitted faster than the dy-
namics propagate. When this simple condition holds, the problem is quadratically invariant,
and the optimal decentralized control problem may be recast as the convex problem (74.7).

This very intuitive result has a counterintuitive complement when one considers compu-
tational delays as well. Suppose now that the ith controller cannot use a measurement from
the jth subsystem until a ’pure’ transmission delay of t̃ij , representing the time it takes to
send the information from one subsystem to the other, as well as a computational delay
of ci, representing the time it takes to process the information once it is received.

While intuition might suggest that these two quantities would end up being added and
then replacing the right-hand side of equation (74.11), if we now assume that the pure
transmission delays satisfy the triangle inequality, the condition for quadratic invariance
becomes:

pij + cj ≥ t̃ij for all i, j (74.12)

with the computational delay on the other side of the inequality.
This shows that, regardless of computational delay, if information can be transmitted

faster than dynamics propagate, then the optimal decentralized control problem can be
reformulated as a convex optimization problem. If we consider a problem with multiple
aerial vehicles, for example, where dynamics between any pair of subsystems will propagate
at the speed of sound, this tells us that transmissions just have to be faster than that
threshold for the optimal control problem to be recast as (74.7).

These results have also been extended to spatio-temporal systems [RCL10], including
the special case of spatially invariant systems.

74.6 Perfectly Decentralized Control

We now revisit the problem of Figure 74.2, where each controller can only use the mea-
surements from its own subsystem, and thus the information constraint is block diagonal.
This problem is never quadratically invariant, and will never satisfy condition (74.8), except
for the case where the subsystems do not affect one another; that is, except for the case
where G is block diagonal as well.

In all other cases where subsystems may have some affect on others, we thus cannot
parametrize all of the admissible stabilizing controllers in a convex fashion, and cannot cast
the optimal decentralized control problem as a convex problem such as in (74.7). However,
a Youla parametrization can similarly be used, and while (74.6) does not hold, as the infor-
mation constraint on the controller is not equivalent to enforcing it on the Youla parameter,
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it is instead equivalent to a quadratic equality constraint on the parameter [Man93]:

K ∈ S ⇐⇒ W2 +QW4 −W1Q−QW3Q = 0 (74.13)

for stable operators W1,W2,W3,W4. When returning to the optimal decentralized control
problem, this equality constraint replaces the final Q ∈ S constraint of (74.7). The problem
is no longer convex due to the quadratic term, but the overall difficulty is transformed to one
well-understood type of constraint, for which many methods exist to approximate optimal
solutions.

Other structural constraints, which are neither block diagonal nor quadratically invari-
ant, can be similarly parametrized by first converting them to a perfectly decentralized
problem [Rot10].

74.7 Nonlinear Decentralized Control

The framework discussed thus far assumes that the operators, both the plant to be con-
trolled and the possible controllers that we may design for it, are all linear, and when appli-
cable, time-invariant as well. A similar convex parametrization of stabilizing decentralized
controllers exists even when the systems are possibly nonlinear and possibly time-varying
(NLTV) [Rot06]. The condition allowing for the parametrization then becomes

K1(I ±GK2) ∈ S for all K1,K2 ∈ S.

When the plant is stable, the stabilizing controllers may be parametrized similarly
to (74.3) [DL82], and when the plant is unstable, the stabilizing controllers may typically
be parametrized similarly to (74.4) [AD84]. Similar to quadratic invariance, the above con-
dition then yields the equivalence of the controller and the feedback map satisfying the
information constraint (74.5), which then gives the equivalence of the controller and the
parameter satisfying the constraint as in (74.6). The convex parametrization of all causal
stabilizing decentralized controllers then results, analogous to the linear case with quadratic
invariance.

While this condition may appear quite different from quadratic invariance, they actually
both reduce to the same conditions when one considers the classes of sparsity constraints or
delay constraints, and so these results extend to all of the cases covered in Sections 74.5.1
and 74.5.3.
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