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Abstract: Quadratic invariance is a condition which has been shown to allow for optimal
decentralized control problems to be cast as convex optimization problems. The condition
relates the constraints that the decentralization imposes on the controller to the structure of
the plant. Recent work considered the problem of finding the closest subset and superset of the
decentralization constraint which are quadratically invariant when the original problem is not.
It was shown that this can itself be cast as a convex problem for the case where the controller
is subject to delay constraints between subsystems, but that this fails when we only consider
sparsity constraints on the controller. For that case, an algorithm was developed that finds the
closest superset in a fixed number of steps, and it was shown to converge in n2 iterations, where
n is the number of subsystems. This paper studies the algorithm further and shows that it
actually converges in log2 n iterations.

1. INTRODUCTION

The design of decentralized controllers has been of interest
for a long time, as evidenced in the surveys (Witsenhausen
[1971], Sandell et al. [1978]), and continues to this day with
the advent of complex interconnected systems. The coun-
terexample constructed by Hans Witsenhausen in 1968
(Witsenhausen [1968]) clearly illustrates the fundamental
reasons why problems in decentralized control are difficult.

Among the recent results in decentralized control, new
approaches have been introduced that are based on alge-
braic principles, such as the work in (Rotkowitz and Lall
[2006b,a], Voulgaris [2001]). Very relevant to this paper is
the work in (Rotkowitz and Lall [2006b,a]), which classified
the problems for which optimal decentralized synthesis
could be cast as a convex optimization problem. Here,
the plant is linear, time-invariant and it is partitioned
into dynamically coupled subsystems, while the controller
is also partitioned into subcontrollers. In this framework,
the decentralization being imposed manifests itself as con-
straints on the controller to be designed, often called the
information constraint.

The information constraint on the overall controller spec-
ifies what information is available to which controller.
For instance, if information is passed between subsystems,
such that each controller can access the outputs from other
subsystems after different amounts of transmission time,
then the information constraints are delay constraints, and
may be represented by a matrix of these transmission
delays. If instead, we consider each controller to be able

to access the outputs from some subsystems but not from
others, then the information constraint is a sparsity con-
straint, and may be represented by a binary matrix.

Given such pre-selected information constraints, the ex-
istence of a convex parameterization for all stabilizing
controllers that satisfy the constraint can be determined
via the algebraic test introduced in (Rotkowitz and Lall
[2006b,a]), which is denoted as quadratic invariance. In
contrast with prior work, where the information con-
straint on the controller is fixed beforehand, this paper
addresses the design of the information constraint itself.
More specifically, given a plant and a pre-selected in-
formation constraint that is not quadratically invariant,
we give explicit algorithms to compute the quadratically
invariant information constraint that is closest to the pre-
selected one. We consider finding the closest quadratically
invariant superset, which corresponds to relaxing the pre-
selected constraints as little as possible to get a tractable
decentralized control problem, which may then be used to
obtain a lower bound on the original problem, as well as
finding the closest quadratically invariant subset, which
corresponds to tightening the pre-selected constraints as
little as possible to get a tractable decentralized control
problem, which may then be used to obtain upper bounds
on the original problem.

In this paper we focus on sparsity constraints that repre-
sent which controllers can access which subsystem outputs,
and represent such constraints with binary matrices. The
distance between information constraints is then given
by the hamming distance, applied to the binary sparsity
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matrices. We provide an algorithm that gives the closest
superset; that is, the quadratically invariant constraint
that can be obtained by way of allowing the least number
of additional links, which was introduced in (Rotkowitz
and Martins [2009]).

When the algorithm was introduced, it was shown to
converge in at most n2 iterations, where n is the number
of subsystems. Here we examine it further, and show that
it actually converges in log n iterations.

For the problem of finding a close subset, we propose a
heuristic-based solution.

Paper organization: Besides the introduction, this pa-
per has seven sections. Section 2 presents the notation
and the basic concepts used throughout the paper. The
sparsity constraints adopted in our work are described
in detail in Section 3, while their characterization using
quadratic invariance is given in Section 4. The main prob-
lem addressed in this paper is formulated and solved in
Section 5. Section 6 briefly notes how this work also applies
when assumptions of linear time-invariance are dropped,
some numerical examples are provided in Section 7, and
conclusions are given in Section 8.

2. PRELIMINARIES

Throughout the paper, we adopt a given causal linear time-
invariant continuous-time plant P partitioned as follows:

P =

[
P11 P12

P21 G

]
Here, P ∈ R(ny+nz)×(nw+nu)

p , where Rq×rp denotes the
set of matrices of dimension q by r, whose entries are
proper transfer functions of the Laplace complex variable
s. Note that we abbreviate G = P22, since we will refer
to that block frequently, and so that we may refer to its
subdivisions without ambiguity. In addition, we indicate
the number of rows and columns of G by ny and nu,
respectively.

Given a causal linear time-invariant controller K in
Rnu×nyp , we define the closed-loop map by

f(P,K)
def
= P11 + P12K(I −GK)−1P21

where we assume that the feedback interconnection is well
posed. The map f(P,K) is also called the (lower) linear
fractional transformation (LFT) of P and K. This
interconnection is shown in Figure 1.

P11 P12

P21 G

K

w

uy

z

Fig. 1. Linear fractional interconnection of P and K

We suppose that there are ny sensor measurements and
nu control actions, and thus partition the sensor measure-
ments and control actions as

y =
[
yT1 . . . yTny

]T
u =

[
uT1 . . . uTnu

]T

and then further partition G and K as

G =

 G11 . . . G1nu

..

.
..
.

Gny1 . . . Gnynu

 K =

 K11 . . . K1ny

...
...

Knu1 . . . Knuny


Given A ∈ Rm×n, we may write A in term of its columns
as

A = [a1 . . . an]

and then associate a vector vec(A) ∈ Rmn defined by

vec(A)
def
=
[
aT1 · · · aTn

]T
Further notation will be introduced as needed.

2.1 Sparsity

We adopt the following notation to streamline our use of
sparsity patterns and sparsity constraints.

Binary algebra. Let B = {0, 1} represent the set of
binary numbers. Given x, y ∈ B, we define the following
basic operations:

x+ y
def
=

{
0, if x = y = 0

1, otherwise
, x, y ∈ B

xy
def
=

{
1, if x = y = 1

0, otherwise
, x, y ∈ B

Given X,Y ∈ Bm×n, we say that X ≤ Y holds if and only
if Xij ≤ Yij for all i, j satisfying 1 ≤ i ≤ m and 1 ≤ j ≤ n,
where Xij and Yij are the entries at the i-th row and j-th
column of the binary matrices X and Y , respectively.

Given X,Y, Z ∈ Bm×n, these definitions lead to the
following immediate consequences:

Z = X + Y ⇒ Z ≥ X (1)

X + Y = X ⇔ Y ≤ X (2)

X ≤ Y, Y ≤ X ⇔ X = Y (3)

Given X ∈ Bm×n, we use the following notation to
represent the total number of nonzero indeces in X:

N (X)
def
=

m∑
i=1

n∑
j=1

Xij , X ∈ Bm×n

with the sum taken in the usual way.

Sparsity patterns. Suppose that Abin ∈ Bm×n is a binary
matrix. The following is the subspace of Rm×np comprising
the transfer function matrices that satisfy the sparsity
constraints imposed by Abin:

Sparse(Abin)
def
=
{
B ∈ Rm×np | Bij(jω) = 0 for all i, j

such that Abin
ij = 0 for almost all ω ∈ R

}
Conversely, given B ∈ Rm×np , we define Pattern(B)

def
=

Abin, where Abin is the binary matrix given by:

Abin
ij =

{
0, if Bij(jω) = 0 for almost all ω ∈ R
1, otherwise

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9116



3. OPTIMAL CONTROL SUBJECT TO
INFORMATION CONSTRAINTS

In this section, we give a detailed description of the
problem setup with sparsity constraints, the main type
of information constraint addressed in this paper.

3.1 Sparsity Constraints

We now introduce the other main class of constraints we
will consider in this paper, where each control input may
access certain sensor measurements, but not others.

We represent sparsity constraints on the overall controller
via a binary matrix Kbin ∈ Bnu×ny . Its entries can be
interpreted as follows:

Kbin
kl =


1, if control input k

may access sensor measurement l;

0, if not.

The subspace of admissible controllers can be expressed
as:

S = Sparse(Kbin)

From the quadratic invariance test introduced in
(Rotkowitz and Lall [2006b,a]), we find that the relevant
information about the plant is its sparsity pattern Gbin,
obtained from:

Gbin = Pattern(G)

where Gbin is interpreted as follows:

Gbin
ij =


1, if control input j

affects sensor measurement i;

0, if not.

3.2 Optimal Control Design Via Convex Programming

Given a generalized plant P and a subspace of appro-
priately dimensioned causal linear time-invariant con-
trollers S, the following is a class of constrained optimal
control problems:

minimize
K

‖f(P,K)‖

subject to K stabilizes P

K ∈ S
(4)

Here ‖·‖ is any norm on the closed-loop map chosen
to encapsulate the control performance objectives. The
delays associated with dynamics propagating from one
subsystem to another, or the sparsity associated with them
not propagating at all, are embedded in P . The subspace of
admissible controllers, S, has been defined to encapsulate
the constraints on how quickly information may be passed
from one subsystem to another (delay constraints) or
whether it can be passed at all (sparsity constraints). We
call the subspace S the information constraint .

Many decentralized control problems may be expressed in
the form of problem (4), including all of those addressed in
(Siljak [1994], Qi et al. [2004], Rotkowitz and Lall [2006b]).
In this paper, we focus on the case where S is defined by
sparsity constraints as discussed above.

This problem is made substantially more difficult in gen-
eral by the constraint that K lie in the subspace S.
Without this constraint, the problem may be solved with

many standard techniques. Note that the cost function
‖f(P,K)‖ is in general a non-convex function of K. No
computationally tractable approach is known for solving
this problem for arbitrary P and S.

4. QUADRATIC INVARIANCE

In this section, we define quadratic invariance, and we
give a brief overview of related results, in particular, that
if it holds then convex synthesis of optimal decentralized
controllers is possible.

Definition 1. Let a causal linear time-invariant plant, rep-

resented via a transfer function matrix G in Rny×nup , be

given. If S is a subset of Rnu×nyp then S is called quadrat-
ically invariant under G if the following inclusion holds:

KGK ∈ S for all K ∈ S.

It was shown in (Rotkowitz and Lall [2006b]) that if S is a
closed subspace and S is quadratically invariant under G,
then with a change of variables, problem (4) is equivalent
to the following optimization problem

minimize
Q

‖T1 − T2QT3‖

subject to Q ∈ RH∞
Q ∈ S

(5)

where T1, T2, T3 ∈ RH∞. Here RH∞ is used to indicate
that T1, T2, T3 and Q are proper transfer function matrices
with no poles in C+ (stable).

The optimization problem in (5) is convex. We may solve
it to find the optimal Q, and then recover the optimal K
for our original problem as stated in (4). If the norm of
interest is the H2-norm, it was shown in (Rotkowitz and
Lall [2006b]) that the problem can be further reduced to
an unconstrained optimal control problem and then solved
with standard software. Similar results have been achieved
(Rotkowitz and Lall [2006a]) for function spaces beyond
Le as well, also showing that quadratic invariance allows
optimal linear decentralized control problems to be recast
as convex optimization problems.

The main focus of this paper is thus characterizing infor-
mation constraints S which are as close as possible to a
pre-selected one, and for which S is quadratically invariant
under the plant G.

4.1 QI - Sparsity Constraints

For the case of sparsity constraints, it was shown in
(Rotkowitz and Lall [2006b]) that a necessary and suffi-
cient condition for quadratic invariance is

Kbin
ki Gbin

ij Kbin
jl (1−Kbin

kl ) = 0 (6)

This condition can be shown to be equivalent to one that
arises for the quadratic invariance of a system with certain
delays between subsystems. This formulation, discussed
in (Rotkowitz and Martins [2009, 2011]), helps give some
insight into where the difficulty arises in the problem that
we address in the next section, but it is not necessary
for understanding the algorithm presented, and we do not
discuss it further here.
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5. CLOSEST QI CONSTRAINT

We now address the main question of this paper, which
is finding the closest sparsity constraints when the above
conditions fail; that is, when the original problem is not
quadratically invariant.

5.1 Sparsity Superset

Consider first finding the closest quadratically invariant
superset of the original constraint set; that is, the sparsest
quadratically invariant set for which all of the original
connections yl → uk are still in place. We present an
algorithm which achieves this and terminates in a fixed
number of steps.

We can write the problem as

minimize
Z∈Bnu×ny

N (Z)

subject to ZGbinZ ≤ Z

Kbin ≤ Z

(7)

where additions and multiplications are as defined for the
binary algebra in the preliminaries, and where we will
wish to use the information constraint S = Sparse(Z).
The objective is defined to give us the sparsest possible
solution, the first constraint ensures that the constraint set
associated with the solution is quadratically invariant with
respect to the plant, and the last constraint requires the
resulting set of controllers to be able to access any informa-
tion that could be accessed with the original constraints.
Let the optimal solution to this optimization problem be
denoted as Z∗ ∈ Bnu×ny .

Define a sequence of sparsity constraints {Zm ∈ Bnu×ny ,
m ∈ N} given by

Z0 = Kbin (8)

Zm+1 = Zm + ZmG
binZm, m ≥ 0 (9)

again using the binary algebra.

This sequence was introduced in (Rotkowitz and Martins
[2009]), where it was shown to converge in n2 iterations.
Our main result will be that this sequence converges to
Z∗, and that it does so in log2 n iterations. We first
prove several preliminary lemmas, and start with a lemma
elucidating which terms comprise which elements of the
sequence.

Lemma 2.

Zm =

2m−1∑
s=0

Kbin(GbinKbin)s ∀ m ∈ N (10)

Proof. For m = 0, this follows immediately from (8).
We then assume that (10) holds for a given m ∈ N, and
consider m+ 1. Then,

Zm+1 =

2m−1∑
i=0

Kbin(GbinKbin)i

+

(
2m−1∑
k=0

Kbin(GbinKbin)k

)
Gbin

(
2m−1∑
l=0

Kbin(GbinKbin)l

)
All terms on the R.H.S. are of the form Kbin(GbinKbin)s

for various s ∈ N. Choosing 0 ≤ i ≤ 2m − 1 gives

0 ≤ s ≤ 2m−1, and choosing k = 2m−1 with 0 ≤ l ≤ 2m−
1 gives 2m ≤ s ≤ (2m − 1) + 1 + (2m − 1) = 2m+1 − 1.
This last term is the highest order term, so we then have

Zm+1 =
∑2m+1−1
s=0 Kbin(GbinKbin)s and the proof follows

by induction.

We now give a lemma showing how many of these terms
need to be considered.

Lemma 3.

Kbin(GbinKbin)r ≤
n−1∑
s=0

Kbin(GbinKbin)s ∀ r ∈ N

(11)
where n = min{ny, nu}.

Proof. Follows immediately from (1) for r ≤ n− 1. Now
consider r ≥ n, k ∈ {1, . . . , nu}, l ∈ {1, . . . , ny}. Then

[Kbin(GbinKbin)r]kl =∑
Kbin
ki1G

bin
i1j1K

bin
j1i2G

bin
i2j2 · · ·G

bin
irjrK

bin
jrl

where the sum is taken over all possible iα ∈ {1, . . . , ny}
and jα ∈ {1, . . . , nu}. Consider an arbitrary such sum-
mand term that is equal to 1, and note that each compo-
nent term must be equal to 1.

If n = ny (i), then by the pigeonhole principle either ∃α
s.t. iα = l (i.a), or ∃α, β, with α 6= β, s.t. iα = iβ (i.b). In
case (i.a), we have Kbin

ki1
Gbin
i1j1
· · ·Gbin

iα−1jα−1
Kbin
jα−1l

= 1, or

in case (i.b), we have Kbin
ki1
· · ·Kbin

jα−1iα
Gbin
iβjβ
· · ·Kbin

jrl
= 1.

In words, we can bypass the part of the path that merely
took yiα to itself, leaving a shorter path that still connects
yl → uk.

Similarly, if n = nu (ii), then either ∃α s.t. jα = k (ii.a),
or ∃α, β with α 6= β s.t. jα = jβ (ii.b). In case (ii.a), we
have Kbin

kiα+1
Gbin
iα+1jα+1

· · ·Kbin
jrl

= 1, or in case (ii.b), we

have Kbin
ki1
· · ·Gbin

iαjα
Kbin
jβiβ+1

· · ·Kbin
jrl

= 1, where we have

now bypassed the part of the path taking ujα to itself to
leave a shorter path.

We have shown that, ∀ r ≥ n, any non-zero component
term of Kbin(GbinKbin)r has a corresponding non-zero
term of strictly lower order, and the result follows.

We now prove another preliminary lemma showing that
the optimal solution can be no more sparse than any
element of the sequence.

Lemma 4. For Z∗ ∈ Bnu×ny and the sequence {Zm ∈
Bnu×ny , m ∈ N} defined as above, the following holds:

Z∗ ≥ Zm, m ∈ N (12)

Proof. First, Z∗ ≥ Z0 = Kbin is given by the satisfaction
of the last constraint of (7), and it just remains to show
the inductive step.

Suppose that Z∗ ≥ Zm for some m ∈ N. It then follows
that

Z∗ + Z∗GbinZ∗ ≥ Zm + ZmG
binZm

From the first constraint of (7) and (2) we know that the
left hand-side is just Z∗, and then using the definition of
our sequence, we get

Z∗ ≥ Zm+1

and this completes the proof.
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We now give a subsequent lemma, showing that if the
sequence does converge, then it has converged to the
optimal solution.

Lemma 5. If Zm∗ = Zm∗+1 for some m∗ ∈ N, then
Zm∗ = Z∗.

Proof. If Zm∗ = Zm∗+1, then Zm∗ = Zm∗GbinZm∗ , and it
follows from (2) that Zm∗GbinZm∗ ≤ Zm∗ . Since Zm+1 ≥
Zm for all m ∈ N, it also follows that Zm ≥ Z0 = Kbin for
all m ∈ N. Thus the two constrains of (7) are satisfied for
Zm∗ .

Since Z∗ is the sparsest binary matrix satisfying these
constraints, it follows that Z∗ ≤ Zm∗ . Together with
Lemma 4 and equation (3), it follows that Zm∗ = Z∗.

We now give the main result, that the sequence converges,
that it does so in log2 n steps, and that it achieves the
optimal solution to our problem.

Theorem 6. The problem specified in (7) has an unique
optimal solution Z∗ satisfying:

Zm∗ = Z∗ (13)

where m∗ = dlog2 ne and where n = min{nu, ny}.

Proof. Zm∗ =
∑2m

∗
−1

s=0 Kbin(GbinKbin)s from Lemma 2,

and then Zm∗ =
∑n−1
s=0 K

bin(GbinKbin)s from Lemma 3

since 2m
∗ ≥ n. Similarly,

Zm∗+1 =

2m
∗+1−1∑
s=0

Kbin(GbinKbin)s

=

n−1∑
s=0

Kbin(GbinKbin)s,

and thus Zm∗ = Zm∗+1 and the result follows from
Lemma 5.

5.2 Sparsity Subset

We now notice an interesting asymmetry. While we have
developed an algorithm which finds the closest quadrati-
cally invariant superset given by sparsity constraints, there
is no clear way to flip the algorithm to find the closest sub-
set. This does not arise with delay constraints (Rotkowitz
and Martins [2009, 2011]), where the problem can be
solved in the same manner either way.

This can be understood as follows. If there exist indeces
i, j, k, l such that Kbin

ki = Gbin
ij = Kbin

jl = 1, but Kbin
kl = 0;

that is, indeces for which condition (6) fails, then the above
algorithm resets Kbin

kl = 1. In other words, if there is
an indirect connection from yl → uk, but not a direct
connection, it hooks up the direct connection.

But now consider what happens if we try to develop an
algorithm that goes in the other direction, that finds the
least sparse constraint set which is more sparse than the
original. If we again have indeces for which condition (6)
fails, then we need to disconnect the indirect connection,
but it’s not clear if we should setKbin

ki orKbin
jl to zero, since

we could do either. The goal is, in principle, to disconnect
the link that will ultimately lead to having to make the

fewest subsequent disconnections, so that we end up with
the closest possible constraint set to the original.

We suggest a heuristic for dealing with this problem.
Another one which builds off of the delay formulation
is also given in (Rotkowitz and Martins [2009, 2011]).
It is likely that they can be greatly improved upon, but
are meant as a first cut at a reasonable polynomial time
algorithm to find a close sparse subset.

The main idea is to keep track of the indirect connections
that are associated with a direct connection. Define this
weight as wkl =

∑ny
i=1

∑nu
j=1K

bin
ki G

bin
ij K

bin
jl thus giving the

amount of 3-hop connections from yl → uk. This is a crude
measure of how many subsequent disconnections we will
have to make to obtain quadratic invariance if we were to
disconnect a direct path from yl → uk. Then, given indeces
for which condition (6) is violated, we set Kbin

ki to zero if
wki ≤ wjl, and set Kbin

jl to zero otherwise.

Note that for this and the other heuristic, we have many
options for how often to reset the guiding variables, that is,
to re-solve the convex program or recalculate the weights,
such as after each disconnection, or after each pass through
all nuny indeces.

It has been noticed that some of the quadratically invari-
ant constraints for certain classes of problems, including
sparsity, may be thought of as partially ordered sets (Shah
and Parrilo [2008]). This raises the possibililty that work
in that area, such as (Cardinal et al. [2009]), may be
leveraged to more efficiently find the closest sparse sets
or subsets.

6. NONLINEAR TIME-VARYING CONTROL

It was shown in (Rotkowitz [2006]) that if we consider the
design of possibly nonlinear, possibly time-varying (but
still causal) controllers to stabilize possibly nonlinear, pos-
sibly time-varying (but still causal) plants, then while the
quadratic invariance results no longer hold, the following
condition

K1(I ±GK2) ∈ S for all K1,K2 ∈ S
similarly allows for a convex parameterization of all stabi-
lizing controllers subject to the given constraint.

This condition is equivalent to quadratic invariance when
S is defined by delay constraints or by sparsity constraints,
and so the algorithms in this paper may also be used to
find the closest constraint for which this is achieved.

7. NUMERICAL EXAMPLES

We present some numerical examples of the algorithm
developed in this paper.

We find the closest quadratically invariant superset, with
respect to the following sparsity patterns of two plants
with four subsystems each (n = 4):

Gbin
I =

 1 0 0 0
1 1 0 0
0 1 1 1
0 0 0 1

 Gbin
II =

 1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1

 (14)

The first sparsity pattern in (14) represents a plant where
the first two control inputs effect not only their own sub-

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

9119



systems, but also the subsequent subsystems, and where
the last control input effects not only its own subsystem,
but also the preceding subsystem. The second sparsity
pattern represents a plant where each control input effects
its own subsystem and the subsequent subsystem, which
also corresponds to the open daisy-chain configuration.
Now consider an initial proscribed controller configuration
where the controller for each subsystem has access only to
the measurement from its own subsystem:

Kbin =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (15)

that is, where the controller is block diagonal. Using the
algorithm specified in (8)-(9) we arrive at:

Z∗I =

 1 0 0 0
1 1 0 0
1 1 1 1
0 0 0 1

 Z∗II =

 1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

 (16)

where Z∗I and Z∗II denote the optimal solution of (7) as
applied to Gbin

I and Gbin
II , respectively, and thus represent

the sparsity constraints of the closest quadratically invari-
ant supersets of the set of block diagonal controllers. We
see that a quadratically invariant set of controllers for the
first plant (which contains all block diagonal controllers)
has to have the same sparsity pattern as the plant, and
an additional link from the first measurement to the third
controller. We then see that any quadratically invariant
set for the open daisy-chain configuration which contains
the diagonal will have to be lower triangular.

8. CONCLUSIONS

The overarching goal of this paper is the design of lin-
ear time-invariant, decentralized controllers for plants
comprising dynamically coupled subsystems. Given pre-
selected constraints on the controller which capture the de-
centralization being imposed, we addressed the question of
finding the closest constraint which is quadratically invari-
ant under the plant. Problems subject to such constraints
are amenable to convex synthesis, so this is important for
bounding the optimal solution to the original problem.

We focused on a particular class of this problem where
the decentralization imposed on the controller is specified
by sparsity constraints; that is, each controller can access
information from some subsystems but not others, and
this is represented by a binary matrix. For this class of
problems we showed that an algorithm which is guaranteed
to give the closest quadratically invariant superset con-
verges in at most log2 n iterations, where n is the number
of subsystems. We also provided a heuristic to give close
quadratically invariant subsets.
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