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Abstract: We consider the design of optimal controllers for a networked
system (or a spatio-temporal system), where the dynamics of each
subsystem may affect those of other subsystems with some propagation
delays, and the controllers may communicate with each other with some
transmission delays. We show that if a simple condition holds, then the
optimal control problem may be recast as a convex optimisation problem.
This is shown to unify and broadly generalise the class of such systems
amenable to convex synthesis. When we consider the special case of
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of tractable problems.
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1 Introduction

We consider the problem of multiple subsystems, each with its own controller,
such that the dynamics of each subsystem may effect those of other subsystems
with some propagation delay, and the controllers may communicate with each
other with some transmission delays. We seek to synthesise linear controllers to
minimise a closed-loop norm for the entire interconnected system. This is an optimal
decentralised control problem which is difficult in general, and there is no known
tractable solution for arbitrary propagation and transmission delays. This paper
states simple conditions on the delays such that this optimal control problem may
be cast as a convex optimisation problem.

It has been shown for general decentralised control that a property called
quadratic invariance allows the optimal control problem to be recast as a
convex optimisation problem (Rotkowitz and Lall, 2006). We thus achieve our
characterisation of delays which allow for convex synthesis by testing for quadratic
invariance.
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We find that if the transmission delays satisfy the triangle inequality, and if
the propagation delay between any pair of subsystems is at least as large as the
transmission delay between those subsystems, then the problem is quadratically
invariant. In other words, if data can be transmitted faster than dynamics propagate
along any link, then optimal controller synthesis may be formulated as a convex
optimisation problem.

It is important to note the extreme generality of this framework and of this
result. It holds for discrete-time systems and continuous-time systems. It holds for
any norm that we wish to minimise. It does not assume that the dynamics of any
subsystem are the same as those of any other, and they may all be completely
different types of objects. Most importantly, the delay between any two subsystems
is not assumed to have any relationship whatsoever to other delays in the system.
They may be assigned independently for each link. Only in the examples do we
assume otherwise.

We then consider spatio-temporal systems, with sensor measurements and
control actions at each point in a spatial domain. We find that when viewed from
the proper general framework, where delays and subsequent effects between any two
points may be arbitrarily assigned, then the approach and the results for networks
of subsystems with delays can be seamlessly extended. Thus we find that if the
transmission delays satisfy the triangle inequality, and if the propagation delay
between any pair of points is at least as large as the transmission delay between
those points, then the problem is quadratically invariant.

Given this general result, we then view spatially invariant systems as a special
case, and what falls out almost immediately is a broad generalisation of the class
of spatially invariant systems for which one can convexify the optimal distributed
control problem.

Some of these results, in particular, the crucial role of the triangle inequality,
were first presented in Rotkowitz et al. (2005). It has since been shown that the
same conditions also allow for the parameterisation of all stabilising causal (possibly
nonlinear, possibly time-varying) controllers over a network (Rotkowitz, 2006).

1.1 Prior work

A vast amount of prior work on optimal control over networks assumes that
the actions of any subsystem have no effect on the dynamics of other subsystems.
For a few other specific structures, tractable methods have been found. One of the
first problems of this nature to be studied was the one-step delayed information
sharing problem. This problem assumes that each subsystem has a controller that
can see its own output immediately, and can see outputs from all other subsystems
after a delay of one time step. This problem has long been known to admit
tractable solutions (Witsenhausen, 1971), and has also been studied more recently
in an LFT framework (Voulgaris, 1999). An interesting class of spatio-temporal
systems which allow for convex synthesis of optimal controllers was identified
in Bamieh and Voulgaris (2005), and named funnel causal systems. One of the
tractable structures discussed in Qi et al. (2004) involved evenly spaced subsystems
which can pass measurements on at the same speed that the dynamics propagate,
and (Rotkowitz and Lall, 2006) included a similar class of evenly spaced systems
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where the bound was found such that if the communication speed exceeded that
bound the problem was amenable to convex synthesis.

These results are all unified and generalised by the simple conditions found in
this paper.

1.2 Outline

In Section 2, we state some preliminaries and notation, define the propagation and
transmission delays, explain why we may assume that the transmission delays satisfy
the triangle inequality, formulate the problem we wish to solve, and give an overview
of results on quadratic invariance, in particular, that it allows convex synthesis of
optimal linear decentralised controllers.

In Section 3, we consider the problem of control over networks. This includes
the main result that being able to communicate faster than the dynamics propagate
between any pair of nodes results in the optimal decentralised control problem being
convex, provided that the transmission delays satisfy the triangle inequality.

In Section 4 we consider spatio-temporal systems. We first derive an analogous
result for this class of problems, and then consider the special case of spatially
invariant systems, resulting in a generalisation of that class which can be convexified.

We make some concluding remarks in Section 5.

2 Preliminaries

We make use of the standard Lp Banach spaces equipped with the usual p-norm,
and the extended space

L2e = {f : R+ → R | fT ∈ L2 ∀ T ∈ R+}.

We use similar notation for discrete time. As is standard, we extend the discrete-time
Banach spaces �p to the extended space

�e = {f : Z+ → R | fT ∈ �∞ for all T ∈ Z+}.

Note that in discrete time, all extended spaces contain the same elements, since the
common requirement is that the sequence is finite at any finite index. This motivates
the abbreviated notation of �e.

We also make use of Le when we want to overload our notation to
simultaneously state something for L2e and �e.

Delay. We define Delay(·) for a causal operator as the smallest amount of time in
which an input can affect its output. For any causal H : Lm

e → Ln
e ,

Delay(H) = inf{τ ≥ 0 | z1(T + τ) �= z2(T + τ), z1 = H(w1), z2 = H(w2),

w1, w2 ∈ Lm
e , w1(t) = w2(t) ∀ t ≤ T}

and if H = 0, we consider its delay to be infinite.
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When H is time-invariant, we may choose T = 0, and when H is linear, we may
choose w1 = 0, so for a causal Linear Time-Invariant (LTI) H : Lm

e → Ln
e ,

Delay(H) = inf{τ ≥ 0 | z(τ) �= 0, z = H(w), w ∈ Lm
e , w(t) = 0 ∀ t ≤ 0}.

Given an impulse response h which characterises the map H , we can then also give
the delay as

Delay(H) = ess inf{τ ≥ 0 |h(τ) �= 0}.

Note that we then have the following inequalities for the delays of a composition or
an addition of operators:

Delay(AB) ≥ Delay(A) + Delay(B)

Delay(A + B) ≥ min{Delay(A), Delay(B)}.

LFT. We suppose that we have a generalised plant P : W × U → Z × Y
partitioned as

P =
[
P11 P12

P21 G

]
.

We define the closed-loop map by

f(P, K) = P11 + P12K(I − GK)−1P21.

The map f(P, K) is also called the (lower) Linear Fractional Transformation (LFT)
of P and K. Note that we abbreviate G = P22, since we will refer to that block
frequently, and so that we can refer to its subdivisions without ambiguity. This
interconnection is shown in Figure 1.

Figure 1 Linear fractional interconnection of P and K

Subsystems. We suppose that there are n subsystems, each with its own controller,
which can be represented as nodes on a graph, such as in Figure 2. Associated with
each subsystem i ∈ 1, . . . , n is then a set of possible control actions Ui = Lqi

2e (or �qi
e ),

and a set of possible output measurements Yi = Lmi
2e (or �mi

e ). All of the results of
this paper hold for continuous time or discrete time, and we will hereafter mostly
refrain from stating both. We also define the overall control space U = U1 × · · · × Un

and the overall measurement space Y = Y1 × · · · × Yn.
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Figure 2 Arbitrary pair of nodes, arbitrary network

For any pair of nodes i, j ∈ 1, . . . , n, we then have a mapping from the control
action at node j to the measurement at node i given as Gij : Uj → Yi, and a part
of controller i to be designed using the available information from node j, given as
Kij : Yj → Ui.

We can amalgamate the sensor measurements and control actions as

y =
[
yT
1 . . . yT

n

]T
u =

[
uT

1 . . . uT
n

]T

and then further amalgamate G and partition K as

G =




G11 . . . G1n

...
...

Gn1 . . . Gnn


 K =




K11 . . . K1n

...
...

Kn1 . . . Knn


.

Whenever a single subscript is used, such as in some of the diagrams for the
examples, it refers to a row from this partition, such as Gi : U → Yi, or Ki : Y → Ui.

2.1 Propagation delays

For any pair of nodes i and j we consider the subsystem Gij : Uj → Yi, and define
the propagation delay pij as the amount of time before a controller action at
subsystem j can affect an output at subsystem i as such

pij = Delay(Gij) for all i, j ∈ 1, . . . , n.

2.2 Transmission delays

For any pair of subsystems k and l we define the (total) transmission delay tkl as
the minimum amount of time before the controller of subsystem k may use outputs
from subsystem l. Given these constraints, we can define the overall subspace of
admissible controllers S such that K ∈ S if and only if

Delay(Kkl) ≥ tkl for all k, l ∈ 1, . . . , n.

In Section 3.2 we will break these total transmission delays out into a pure
transmission delay, representing the time it takes to communicate the information
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from one subsystem to another, and a computational delay, representing the time it
takes to process the information before it is used by the controller.

Triangle inequality. For the main result of this paper, we will assume that the
triangle inequality holds amongst the transmission delays, that is,

tki + tij ≥ tkj for all k, i, j.

This is typically a very reasonable assumption for the following reasons. tkj is
defined as the minimum amount of time before controller k can use outputs from
subsystem j. So if there existed an i such that the inequality above failed, that
would mean that controller k could receive that information more quickly if it came
indirectly via controller i. We would thus reroute this information to go through i,
tkj would be reset to tki + tij , and the inequality would hold.

To put it another way, we could think of each subsystem as a node on a directed
graph, with the initial distance from any node j to any node k as tkj , the time
it takes before controller k can directly use outputs from subsystem j. We then
want to find the shortest overall time for any controller k to use outputs from any
subsystem j, that is, the shortest path from node j to node k. So to find our final
tkj’s, we run Bellman-Ford or another shortest path algorithm on our initial graph
(Papadimitriou and Steiglitz, 1982), and the resulting delays are thus guaranteed to
satisfy the triangle inequality.

Note that the triangle inequality is never assumed to hold for the propagation
delays.

2.3 Problem formulation

Given a generalised plant P and transmission delays tkl for each pair of subsystems,
we define S as above, and we would then like to solve the following problem:

minimise ‖f(P, K)‖
subject to K stabilises P (1)

K ∈ S.

Here ‖·‖ is any norm on the closed-loop map chosen to encapsulate the control
performance objectives. The delays associated with dynamics propagating from one
subsystem to another are embedded in P . The subspace of admissible controllers,
S, has been defined to encapsulate the constraints on how quickly information may
be passed from one subsystem to another. We call the subspace S the information
constraint.

Many decentralised control problems may be expressed in the form of
problem (1). In this paper, we focus on the case where S is defined by delay
constraints as discussed above.

This problem is made substantially more difficult in general by the constraint
that K lie in the subspace S. Without this constraint, the problem may be solved
with many standard techniques. Note that the cost function ‖f(P, K)‖ is in general
a non-convex function of K. No computationally tractable approach is known for
solving this problem for arbitrary P and S.
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In Section 4 the transmission delays will be given between every pair of spatial
points, rather than between every pair of subsystems, and the rest of the problem
formulation remains the same.

2.4 Quadratic invariance

In this subsection we define quadratic invariance, and give a brief overview of results
regarding this condition, in particular, that it allows convex synthesis of optimal
linear decentralised controllers.

Definition 1: The set S is called quadratically invariant under G if

KGK ∈ S for all K ∈ S.

Note that, given G, we can define a quadratic map by Ψ(K) = KGK. Then a set S
is quadratically invariant if and only if S is an invariant set of Ψ; that is, Ψ(S) ⊆ S.

It was shown in Rotkowitz and Lall (2006) that if S is a closed subspace and S
is quadratically invariant under G, then with a change of variables, problem (1) is
equivalent to the following optimisation problem

minimise ‖T1 − T2QT3‖
subject to Q ∈ RH∞ (2)

Q ∈ S.

where T1, T2, T3 are stable.
This is a convex optimisation problem. We may solve it to find the optimal Q,

and then recover the optimal K for our original problem.
These results were achieved in Rotkowitz and Lall (2006) for operators acting

on L2e or �e, and similar results have been achieved (Rotkowitz and Lall, 2002)
for other function spaces as well, also showing that quadratic invariance allows
optimal linear decentralised control problems to be recast as convex optimisation
problems. These results can be directly applied to control over networks in Section 3.
The technical work in Rotkowitz and Lall (2006) can be combined with the ideas
in the Appendix of Bamieh and Voulgaris (2005) to guarantee that this result holds
for the operators considered in Section 4 as well; that is, for LTI spatio-temporal
operators satisfying certain technical conditions.

The main focus of this paper is thus characterising delays for which the
information constraint S is quadratically invariant under the plant G.

3 Networks

In this section we consider control over networks, with propagation and
transmission delays between nodes as defined and described above.

Section 3.1 contains the main result of the paper, where we prove that if this
triangle inequality is satisfied, and if the propagation delay associated with any pair
of subsystems is at least as large as the associated transmission delay, then the
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information constraint is quadratically invariant, and thus, optimal control may be
cast as a convex optimisation problem.

In Section 3.2, we break these total transmission delays out into a pure
transmission delay, representing the time it takes to communicate the information
from one subsystem to another, and a computational delay, representing the time
it takes to process the information before it is used by the controller. We find,
somewhat surprisingly, that transmitting faster than the propagation of dynamics
still guarantees convexity, and in fact, that the computational delay causes the
condition to be relaxed.

In Section 3.3, we discuss how sparsity constraints may be considered a special
case of the framework analysed in this paper, namely, by viewing them as very large
delays. We then show how sparsity and delay constraints can be combined to handle
the very general, realistic case of a network where some nodes are connected with
delays and others are not connected at all.

We then consider a few examples in Section 3.4. First is an example
corresponding to a very general problem of the control of vehicles in formation.
The vehicles may have arbitrary positions, their dynamics propagate at a constant
speed, and they communicate their measurements at a constant speed. The optimal
control problem is amenable to convex synthesis as long as the communication speed
exceeds the propagation speed. Even though this itself is a broad generalisation of
previously identified tractable classes, it follows almost immediately from the results
of this paper.

Conditions are then derived for convexity of optimal control over a lattice, for
two different types of assumptions on the propagation of dynamics.

3.1 Conditions for convexity

We first provide a necessary and sufficient condition for quadratic invariance in
terms of these delays, which is derived fairly directly from our definitions.

Theorem 2: Suppose that G and S are defined as above. S is quadratically
invariant under G if and only if

tki + pij + tjl ≥ tkl for all i, j, k, l. (3)

Proof: Given K ∈ S,

KGK ∈ S ⇐⇒ Delay
(
(KGK)kl

) ≥ tkl for all k, l.

We now seek conditions which cause this to hold.

(KGK)kl =
∑

i

∑
j

KkiGijKjl

and so for any k and l,

Delay
(
(KGK)kl

) ≥ min
i,j

{Delay(KkiGijKjl)}
≥ min

i,j
{Delay(Kki) + Delay(Gij) + Delay(Kjl)}

≥ min
i,j

{tki + pij + tjl}.
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Thus S is quadratically invariant under G if

min
i,j

{tki + pij + tjl} ≥ tkl for all k, l

which is equivalent to

tki + pij + tjl ≥ tkl for all i, j, k, l.

Now suppose that Condition (3) fails. Then there exists i, j, k, l such that

tki + pij + tjl < tkl.

Consider K such that

Kab = 0 if (a, b) /∈ {(k, i), (j, l)}.

Then

(KGK)kl =
∑

r

∑
s

KkrGrsKsl = KkiGijKjl.

Since Delay(Gij) = pij , we can easily choose Kki and Kjl such that Delay(Kki) =
tki, Delay(Kjl) = tjl, and

Delay
(
(KGK)kl

)
= tki + pij + tjl.

So K ∈ S but KGK /∈ S and thus S is not quadratically invariant under G. �

Main networks result. The following is the main result of this paper. It states that if
the transmission delays satisfy the triangle inequality, and if the propagation delay
between any pair of subsystems is at least as large as the transmission delay between
those subsystems, then the information constraint is quadratically invariant. In other
words, if along any link, data can be transmitted faster than dynamics propagate,
then optimal controller synthesis may be cast as a convex optimisation problem.

Theorem 3: Suppose that G and S are defined as above, and that the transmission
delays satisfy the triangle inequality. If

pij ≥ tij for all i, j (4)

then S is quadratically invariant under G.

Proof: Suppose Condition (4) holds. Then for all i, j, k, l we have

tki + pij + tjl ≥ tki + tij + tjl

≥ tkl by the triangle inequality

and thus by Theorem 2, S is quadratically invariant under G. �
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Thus we have shown that the triangle inequality and Condition (4) are sufficient for
quadratic invariance. The following remarks discuss assumptions under which they
are necessary as well.

Remark 4: If we assume that tii = 0 for all i, that is, that there is no delay before
a subsystem’s controller may use its own outputs, then we consider Condition (3)
with k = i, l = j and see that Condition (4) is necessary for quadratic invariance.

Remark 5: If we assume that pii = 0 for all i, that is, that there is no
delay associated with propagating from a subsystem to itself, then we consider
Condition (3) with i = j and see that the triangle inequality is necessary for
quadratic invariance.

3.2 Computational delays

In this subsection, we consider what happens when the controller of each subsystem
has a computational delay ci associated with it. The delay for controller i to use
outputs from subsystem j, the total transmission delay, is then broken up into a
pure transmission delay and this computational delay, as follows

tij = ci + t̃ij .

If we were to assume that the triangle inequality held for the total transmission
delays tij as before, then we would simply get the same results as in the previous
section with the substitution above. In particular, we would find pij ≥ ci + t̃ij to
be the condition for quadratic invariance. However, there are many cases where
it makes sense to instead assume that the triangle inequality holds for the pure
transmission delays t̃ij , which is a stronger assumption. An example where such is
clearly the case is provided in Section 3.4.1.

In this section we derive conditions for quadratic invariance when we can assume
that the triangle inequality holds for the pure transmission delays t̃ij , and get a
surprising result.

As before, the propagation delays are defined as

pij = Delay(Gij) for all i, j

and S is now defined such that K ∈ S if and only if

Delay(Kkl) ≥ ck + t̃kl for all k, l.

Thus the necessary and sufficient condition for quadratic invariance from Theorem 2
becomes

ck + t̃ki + pij + cj + t̃jl ≥ ck + t̃kl for all i, j, k, l

which reduces to

t̃ki + pij + cj + t̃jl ≥ t̃kl for all i, j, k, l. (5)
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The following theorem gives conditions under which the information constraint
is quadratically invariant. It states that if the triangle inequality holds amongst
the pure transmission delays, and if Condition (6) holds, then the information
constraint is quadratically invariant. Surprisingly, we see that the computational
delay now appears on the left side of the inequality. In other words, not only does
transmitting data faster than dynamics propagate still allow for convex synthesis
when we account for computational delay, but the condition is actually relaxed.

Theorem 6: Suppose that G and S are defined as above, and that the pure
transmission delays satisfy the triangle inequality. If

pij + cj ≥ t̃ij for all i, j (6)

then S is quadratically invariant under G.

Proof: Suppose Condition (6) holds. Then for all i, j, k, l we have

t̃ki + pij + cj + t̃jl ≥ t̃ki + t̃ij + t̃jl

≥ t̃kl by the triangle inequality

and thus Condition (5) holds and S is quadratically invariant under G. �

Thus we have shown that the triangle inequality and Condition (6) are sufficient for
quadratic invariance. The following remark discusses an assumption under which
the condition is necessary as well.

Remark 7: If we assume that t̃ii = 0 for all i, that is, that there is no additional
delay before a subsystem’s controller may use its own outputs, other than the
computational delay, then we consider Condition (5) with k = i, l = j and see that
Condition (6) is necessary for quadratic invariance. Since the computational delay
has been extracted, this is now a very reasonable assumption which is essentially
true by definition.

3.3 Combining sparsity and delay constraints

In this section, we discuss how sparsity constraints may be considered a special
case of the framework analysed in this paper. We then show how the two can be
combined to handle the very general, realistic case of a network where some nodes
are connected with delays as above and others are not connected at all. An explicit
test for quadratic invariance in this case is provided.

The key observation is that a sparsity constraint may be considered an infinite
delay. We thus define an extended notion of propagation and transmission delays,
where they are assigned to be sufficiently large when they do not exist, and then the
results from the rest of this paper may be applied to test for quadratic invariance
and convexity.

3.3.1 Propagation delays

We now consider a plant for which the controllers of certain subsystems may or
may not have any effect on other subsystems, and when they do, there may be a
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propagation delay associated with that effect. First, define a binary matrix Gbin such
that

Gbin
ij =

{
0 if Gij = 0

1 otherwise
.

In other words, Gbin defines the sparsity structure or interconnection structure of the
plant, as Gbin

ij = 0 if subsystem i is not affected by inputs to subsystem j. We would
then like to define the propagation delay pij to be extremely large if this is the case,
as such

pij =

{
H if Gbin

ij = 0

Delay(Gij) if Gbin
ij = 1

for some large H .

3.3.2 Transmission delays

We similarly assign a binary matrix Kbin such that Kbin
kl = 0 if controller k may

never use outputs from subsystem l. For any other pair of subsystems k and l we
define the (total) transmission delay tkl as in the rest of this paper; that is, as the
minimum amount of time before the controller of subsystem k may use outputs
from subsystem l. Given these constraints, we can define the overall subspace of
admissible controllers S such that K ∈ S if and only if

Kkl = 0 ∀ k, l such that Kbin
kl = 0

Delay(Kkl) ≥ tkl ∀ k, l such that Kbin
kl = 1.

We wish to assign a very large transmission delay to the former case, and so define

tkl = H ∀ k, l such that Kbin
kl = 0

for the same large H as above.

3.3.3 Condition for convexity

Given these extended definitions of propagation delays and transmission delays for
a combination of sparsity and delay constraints, we can now test for quadratic
invariance using Theorem 2.

These definitions of extended delays along with our definition of the constraint
set S allow us to use this and the rest of the results of this paper as long as H
has been chosen large enough. Condition (3) is indeed necessary and sufficient for
quadratic invariance as long as

H > 2 max{tkl} + max{pij}
where of course the first maximum is taken over all k, l such that Kbin

kl = 1 and the
second is taken over all i, j such that Gbin

ij = 1. The bound on H arises because
Condition (3) must fail if Kbin

kl = 0, but Kbin
ki = Gbin

ij = Kbin
jl = 1. It then also follows

that the condition is satisfied if Kbin
ki Gbin

ij Kbin
jl = 0, as is also required, and that if all

four of these values are 1, then whether the condition is satisfied depends on the
delays, as in the rest of the paper.
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3.4 Examples

We consider here some special cases of interest.

3.4.1 Vehicle formation example

We now consider an important special case, which corresponds to the problem of
controlling multiple vehicles in a formation.

Suppose there are n subsystems (vehicles), with positions x1, . . . , xn ∈ R
d.

Typically, we will have d = 3, but these results hold for arbitrary d ∈ Z+.
Let D represent the diameter, the maximum distance between any two

subsystems

D = max
i,j

‖xi − xj‖.

For most applications of interest the appropriate norm throughout this section
would be the Euclidean norm, but these results hold for arbitrary norm on R

d.
We suppose that dynamics of all vehicles propagate at a constant speed,

determined by the medium, such that the propagation delays are proportional to the
distance between vehicles, as illustrated in Figure 3.

Figure 3 Communication and propagation in all directions (see online version for colours)

Let γp be the amount of time it takes dynamics to propagate one unit of distance,
i.e., the inverse of the speed of propagation. For example, when considering
formations of aerial vehicles, γp would equal the inverse of the speed of sound.

The system G is then such that

Delay(Gij) = γp‖xi − xj‖ for all i, j.

We similarly suppose that data can be transmitted at a constant speed, such that
the transmission delays are proportional to the distances between vehicles, such as
if each vehicle could broadcast its information to the others. This is also illustrated
in Figure 3. We assume that the perturbations from our desired formation are small
enough that, for the purposes of controller synthesis, we may consider these delays
to be fixed.
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Let γt be the amount of time it takes to transmit one unit of distance, i.e., the
inverse of the speed of transmission. Let C be the computational delay at each
vehicle. The set of admissible controllers is then defined such that K ∈ S if and
only if

Delay(Kkl) ≥ C + γt‖xk − xl‖ for all k, l.

We can now apply Theorem 6 with

pij = γp‖xi − xj‖, t̃ij = γt‖xi − xj‖, and ci = C for all i, j.

Clearly, t̃ii = 0 for all i as in Remark 7, so the conditions of Theorem 6 are both
necessary and sufficient for quadratic invariance.

Theorem 8: Suppose that G and S are defined as above. S is quadratically
invariant under G if and only if

γp + (C/D) ≥ γt.

Proof: Since any norm satisfies the triangle inequality, the pure transmission delays
clearly satisfy the triangle inequality, so applying Theorem 6, S is quadratically
invariant under G if and only if

γp‖xi − xj‖ + C ≥ γt‖xi − xj‖ for all i, j

which is equivalent to

γp + (C/D) ≥ γt. �

Thus we see that, in the absence of computational delay, finding the minimum-norm
controller may be reduced to a convex optimisation problem when the speed of
transmission is faster than the speed of propagation; that is, when γp ≥ γt. We also
see that this not only remains true in the presence of computational delay, but that
we get a buffer relaxing the condition.

A similar result was previously achieved for a very specific case of vehicles
equally spaced along a line (Rotkowitz and Lall, 2006). This shows how the results
of this paper allow us to effortlessly generalise to the case considered in this
subsection, where the vehicles have arbitrary positions in arbitrary dimensions. This
is a crucial generalisation for applications to realistic formation flight problems.

3.4.2 Two-dimensional lattice example

In this subsection we will consider subsystems distributed in a lattice, and use these
results to derive the conditions for convexity of the associated optimal decentralised
control problem.

We first consider the case where the controllers can communicate along the edges
of the lattice with a delay of t, and the dynamics similarly propagate along the edges
with a delay of p, as illustrated in Figure 4.
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Figure 4 Two-dimensional lattice with dynamics propagating along edges (see online
version for colours)

It is a straightforward consequence of this paper that the optimal controllers may
be synthesised with convex programming if

p ≥ t.

We now consider a more interesting variant, where the controllers again
communicate only along the edges of the lattice, but now the dynamics propagate
in all directions, as illustrated in Figure 5.

Figure 5 Two-dimensional lattice with dynamics propagating in all directions (see online
version for colours)

Let p again be the amount of time it takes for the dynamics to propagate one edge
length, for instance, from G1 to G4. Along a diagonal then, for example, between
G1 and G5, the propagation delay is p

√
2 and the transmission delay is 2t. The

condition for convexity therefore becomes

p ≥ t
√

2.
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4 Spatio-temporal systems

In this section we turn our attention to spatio-temporal systems. We consider delays
before control actions at certain points in the spatial domain can effect outputs at
other points, as well as delays before control actions at certain points may depend
on outputs at other points. These are analogous to the propagation delays and
transmission delays defined between nodes/subsystems in the previous section.

In Section 4.1, we define these systems, these delays, and the subsequent
information constraints. This section is a very technical necessity; the main message
for the reader wishing to skip it is that we can define the delay between two points
for a spatio-temporal system, and then build up a framework analogous to that for
control over networks.

We then show in Section 4.2 that once the framework is established in a
particular way, we can derive results for the convexity of the optimal distributed
control problem which are a clear extension to the results for networks; that is, if the
transmission delays satisfy the triangle inequality, then the information constraint is
quadratically invariant if the transmission delay between any two points is less than
the propagation delay between those points.

We then in Section 4.3 consider the special case of spatially invariant systems.
It falls out almost immedaitely from our more general spatio-temporal result that
these problems are convex if the propagation function is subadditive, which is itself
a broad generalisation of previously identified convex problems of this class.

These results hold for either continuous or discrete spatial or temporal domains.
When the spatial domain is discrete, the results and the proofs are virtually identical
to those of the previous section, so we will focus here on the continuous spatial
domain.

4.1 Spatio-temporal preliminaries

Suppose we have d spatial dimensions for some d ∈ Z>0. We consider systems which
are linear and time-invariant (though not necessarily spatially invariant) and that we
can thus characterise in terms of a spatio-temporal impulse response h : R

d × R
d ×

R → R. We can then define a system Hh as Hhu = y where

y(x, T ) =
∫

Rd

∫
R

h(x, ξ, T − τ)u(ξ, τ) dτ dξ for x ∈ R
d, T ∈ R.

We further restrict ourselves to systems for which the impulse response satisfies

sup
x∈Rd

sup
τ∈[0,T ]

∫
Rd

|h(x, ξ, τ)| dξ < ∞ ∀ T ∈ R+

and

sup
ξ∈Rd

sup
τ∈[0,T ]

∫
Rd

|h(x, ξ, τ)| dx < ∞ ∀ T ∈ R+

and (temporal) causality requires that h(x, ξ, τ) = 0 for all τ < 0.

Delays. We now seek to define Delay(Hh, x, ξ) as the delay for such an operator
from point ξ ∈ R

d to point x ∈ R
d, analogous to how in the previous section
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Delay(Gij) gave the delay from node j to node i. However, we must exercise great
care with this definition. If we were to similarly define it as the smallest time until
a change in (and only in) u(ξ, ·) could affect a change in y(x, ·), then this would
always be infinite, since only changing the input on a set of measure zero cannot
alter the output.

Similarly, if we defined it directly in terms of a given impulse response as the
smallest time for which h(x, ξ, τ) �= 0, this would make distinctions that we do not
want to make, since two impulse responses that differ only on a set of measure zero
will yield the same mapping, but would then give different delay profiles.

We thus define the delay as follows for all x, ξ ∈ R
d

Delay(Hh, x, ξ) = sup
ε>0

ess inf{τ ≥ 0 |h(x′, ξ′, τ) �= 0, ‖(x′, ξ′) − (x, ξ)‖ < ε}.

This gives the same delay profile for any impulse responses which differ on only
a set of measure zero, and thus for any which characterise a given mapping.
Further, letting t(x, ξ) = Delay(H,x, ξ) for all x, ξ ∈ R

d, this will always give a
lower semicontinuous function. Such a function has a closed epigraph, which will
be essential for our purposes.

If we started with an impulse response that had its support in the epigraph of a
lower semicontinuous function, then that function would result as the delay profile,
and the delay function would revert to the more intuitive

inf{τ ≥ 0 |h(x, ξ, τ) �= 0}.

Lastly, this results in the following inequalities for the delays of a composition or
an addition of operators:

Delay(AB, ξk, ξj) ≥ inf
ξi

Delay(A, ξk, ξi) + Delay(B, ξi, ξj)

Delay(A + B, ξk, ξj) ≥ min{Delay(A, ξk, ξj), Delay(B, ξk, ξj)}.

Propagation delays. Given a plant G, we define a propagation delay function giving
the amount of time before a controller action around point ξj can affect an output
around point ξi as

p(ξi, ξj) = Delay(G, ξi, ξj) for all ξi, ξj ∈ R
d.

Transmission delays. For any pair of points ξk, ξl ∈ R
d we define the transmission

delay t(ξk, ξl) as the minimum amount of time before the controller in a
neighbourhood of point ξk may use outputs from a neighbourhood of point ξl.
Given these constraints, we can define the overall subspace of admissible controllers
S such that K ∈ S if and only if

Delay(K, ξk, ξl) ≥ t(ξk, ξl) for all ξk, ξl ∈ R
d.

If t is lower semicontinuous, then the information constraint S can also be
characterised by K ∈ S if and only if K can be represented by a kernel hK such
that

hK(ξk, ξl, τ) = 0 for all τ < t(ξk, ξl).
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Triangle inequality. For the main spatio-temporal result, we will again assume that
the triangle inequality holds amongst the transmission delays, which is written as

t(ξk, ξi) + t(ξi, ξj) ≥ t(ξk, ξj) for all ξk, ξi, ξj ∈ R
d

and which is again a reasonable assumption for the same reasons as in the case of
networks.

4.2 Conditions for convexity

We are now ready to prove our main spatio-temporal results.
We first provide a necessary and sufficient condition for quadratic invariance in

terms of these delays, which is again derived fairly directly from our definitions.
The proof of this, as well as the proof of the main result of this section, follow

very similarly to those for networks.

Theorem 9: Suppose that G and S are defined as above. S is quadratically
invariant under G if and only if for all ξi, ξj , ξk, ξl ∈ R

d

t(ξk, ξi) + p(ξi, ξj) + t(ξj , ξl) ≥ t(ξk, ξl). (7)

Proof: Given K ∈ S,

KGK ∈ S ⇐⇒ Delay
(
(KGK, ξk, ξl)

) ≥ t(ξk, ξl) ∀ ξk, ξl ∈ R
d.

We now seek conditions which cause this to hold. For all ξk, ξl ∈ R
d,

Delay
(
(KGK, ξk, ξl)

) ≥ inf
ξi,ξj

{t(ξk, ξi) + p(ξi, ξj) + t(ξj , ξl)}.

Thus S is quadratically invariant under G if

inf
ξi,ξj

{t(ξk, ξi) + p(ξi, ξj) + t(ξj , ξl)} ≥ t(ξk, ξl) ∀ ξk, ξl

which is equivalent to

t(ξk, ξi) + p(ξi, ξj) + t(ξj , ξl) ≥ t(ξk, ξl) ∀ ξi, ξj , ξk, ξl ∈ R
d.

Now suppose that Condition (7) fails. Then there exists ξi, ξj , ξk, ξl ∈ R
d such that

t(ξk, ξi) + p(ξi, ξj) + t(ξj , ξl) < t(ξk, ξl).

Consider K such that

hK(ξa, ξb, τ) =




γ, if ‖(ξa, ξb) − (ξj , ξl)‖ < ε, τ ∈ [t(ξa, ξb), t(ξa, ξb) + β]

γ, if ‖(ξa, ξb) − (ξk, ξi)‖ < ε, τ ∈ [t(ξa, ξb), t(ξa, ξb) + β]

0, otherwise
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for some β > 0, γ �= 0, ε > 0. Then

Delay
(
(KGK, ξk, ξl)

) ≤ t(ξk, ξi) + p(ξi, ξj) + t(ξj , ξl).

So K ∈ S but KGK /∈ S and thus S is not quadratically invariant under G. �

Main spatio-temporal result. The following is the main spatio-temporal result of
this paper. It states that if the transmission delays satisfy the triangle inequality,
and if the propagation delay between any pair of spatial points is at least as large
as the transmission delay between those points, then the information constraint
is quadratically invariant. In other words, if between any points, data can be
transmitted faster than dynamics propagate, then optimal controller synthesis may
be cast as a convex optimisation problem.

Theorem 10: Suppose that G and S are defined as above, and that the transmission
delays satisfy the triangle inequality. If

p(ξi, ξj) ≥ t(ξi, ξj) for all ξi, ξj (8)

then S is quadratically invariant under G.

Proof: Suppose Condition (8) holds. Then for all ξi, ξj , ξk, ξl we have

t(ξk, ξi) + p(ξi, ξj) + t(ξj , ξl) ≥ t(ξk, ξi) + t(ξi, ξj) + t(ξj , ξl)

≥ t(ξk, ξl) by the triangle inequality

and thus by Theorem 2, S is quadratically invariant under G. �

Thus we have shown that the triangle inequality and Condition (8) are sufficient for
quadratic invariance. The following remarks discuss assumptions under which they
are necessary as well.

Remark 11: If we assume that t(ξi, ξi) = 0 for all ξi ∈ R
d, that is, that there is no

delay before a controller at a given point may use the output from the same point,
then we consider Condition (7) with ξk = ξi, ξl = ξj and see that Condition (8) is
necessary for quadratic invariance.

Remark 12: If we assume that p(ξi, ξi) = 0 for all ξi ∈ R
d, that is, that there is no

delay before a control action at a given point can affect the output at that point,
then we consider Condition (7) with ξi = ξj and see that the triangle inequality is
necessary for quadratic invariance.

4.3 Spatial invariance

We now consider the special case of spatial invariance, where the behaviour of a
spatio-temporal system from one point to another remains constant if both points
undergo the same shift; in other words, we can express the impulse response as

h(ξi, ξj , τ) = hSI(ξi − ξj , τ) for all ξi, ξj ∈ R
d, τ ∈ R
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for a spatially invariant impulse response hSI : R
d × R → R. (We hereafter drop

the superscript and assume that we are dealing with spatially invariant impulse
responses which are thus functions of one spatial variable and one temporal
variable.) We can then define a system Hh as Hhu = y where

y(x, T ) =
∫

Rd

∫
R

h(x − ξ, T − τ) u(ξ, τ) dτ dξ.

Our previous restrictions now imply that the impulse response satisfies

sup
τ∈[0,T ]

∫
Rd

|h(x, τ)| dx < ∞ ∀ T ∈ R+

and (temporal) causality requires that h(x, τ) = 0 for all τ < 0, as in Bamieh and
Voulgaris (2005).

This will result in a spatially invariant propagation delay function pSI : R
d → R+

given by

p(ξi, ξj) = pSI(ξi − ξj) for all ξi, ξj ∈ R
d

and we hereafter drop this superscript as well.
We now similarly consider the special case of imposing spatially invariant

constraints on our controller. Then we could express the transmission delays which
determine our constraint set St as

t(ξk, ξl) = f(ξk − ξl) for all ξk, ξl ∈ R
d

for some function f : R
d → R, which we then, following the notation of Bamieh and

Voulgaris (2005), call a propagation function. The set of admissible controllers Sf ,
defined such that an input in a neighbourhood of location ξ cannot affect the
output in a neighbourhood of location x + ξ until at least f(x) units of time have
elapsed, then corresponds to our previous definition of St with the above equality.
(Note that this is a slight break from the notation of Bamieh and Voulgaris, 2005.)
More formally,

Sf = {K | Delay(K, ξk, ξl) ≥ f(ξk − ξl) ∀ ξk, ξl ∈ R
d}

which, if f is lower semicontinuous, is equivalent to

{Hh |h(x, τ) = 0 ∀ τ < f(x)}.

Note that restricting these sets to only contain causal operators now corresponds to
only considering propagation functions for which f(x) ≥ 0 for all x ∈ R

d.
In Bamieh and Voulgaris (2005), focusing on d = 1, it was shown that finding

the optimal controller constrained to such a set (K ∈ Sf ) could be cast as a convex
optimisation problem if

1 G ∈ Sf

2 f(0) = 0

3 f(x) is concave in R+

4 f(x) is concave in R−.
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Such a function f(·) is shown in Figure 6, and we see the motivation for calling
these systems funnel causal.

Figure 6 Funnel causality

Main spatially invariant result. We now turn the results of this paper onto this set of
problems to see if we can generalise the class which is amenable to convex synthesis.
We show that if the plant is slower than the controller, the propagation function
only needs to be subadditive for the information contraint to be quadratically
invariant.

Theorem 13: Suppose that G and Sf are defined as above. Then Sf is quadratically
invariant under G if the following hold

1 p(x) ≥ f(x) for all x ∈ R
d (i.e., G ∈ Sf )

2 f(x + y) ≤ f(x) + f(y) for all x, y ∈ R
d.

Proof: The condition that the dynamics cannot propagate from one point to
another any faster than the controllers are allowed to communicate (8) is indeed
equivalent to Condition (1) above. It remains to see how the triangle inequality
amongst transmission delays manifests itself in this framework.

The remaining condition (triangle inequality) for quadratic invariance from
Theorem 10

t(ξk, ξj) ≤ t(ξk, ξi) + t(ξi, ξj) ∀ ξk, ξi, ξj ∈ R
d

reduces with spatial invariance to

f(ξk − ξj) ≤ f(ξk − ξi) + f(ξi − ξj) ∀ ξk, ξi, ξj ∈ R
d
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which, since we can choose x = ξk − ξi, y = ξi − ξj , or conversely, ξj = 0, ξi = y,
ξk = x + y, is equivalent to

f(x + y) ≤ f(x) + f(y) ∀ x, y ∈ R
d. �

When d = 1, this includes, but is not limited to, functions which satisfy
Conditions (2)–(4).

4.3.1 Spatially invariant examples

We now consider the case of one spatial dimension to explore some constraint
sets which are not funnel causal but which we now know to also yield convex
optimisation problems.

One type of function which is subadditive but not concave is the step function,
f(x) = �x�

B . This is shown is Figure 7, with different values of B for positive and
negative x.

Figure 7 Subadditive step function

Note that it is important that the ceiling function be used rather than the floor, both
to ensure that the function is subadditive (and thus, that the associated information
constraint is quadratically invariant) as well as to ensure that the function is lower
semicontinuous (and thus, that the epigraph and associated information constraint
are closed).

While not explicitly stated, an implicit constraint in Conditions (2)–(4), when
combined with the nonnegativity of f , is that f has to be nonincreasing in R− and
nondecreasing in R+. This would typically be desired, as it corresponds to saying
that information can be transmitted at least as fast over a shorter distance as it
can over a longer distance. However, it is interesting to note that this is no longer
required either. An example of a subadditive function which violates this assumption
is shown in Figure 8.
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Figure 8 Subadditive non-monotonic function

We mostly focused on continuous spatial domains in this paper, but noted that all
of the results hold for discrete spatial domains as well. The propagation function
shown in Figure 9,

f(x) =

{
0 if x even

1 if x odd

is an example of a propagation function on Z which is indeed subadditive, but which
is not at all concave or monotonic.

Figure 9 Subadditive discrete function

Two other generalisations have been achieved which are more subtle but likely
more important. The first is that Condition (2) is no longer required, and we can
have any f(0) ≥ 0, which could be essential for incorporating computational delay.
The second is that, in this framework, it was seamless to consider multiple spatial
dimensions d.

5 Conclusions

We have studied the problem of finding optimal controllers subject to delays
between different parts of the controller.

We first studied this in the context of control over networks, where multiple
subsystems are subject to constraints on how quickly they can share information.
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In Theorem 3 we showed that, presuming the transmission delays satisfy the triangle
inequality, if the transmission delay between any pair of subsystems is less than the
corresponding propagation delay, then the information constraint is quadratically
invariant. This allows for convex synthesis of the optimal decentralised controllers.

We then studied this problem in the context of spatio-temporal systems, subject
to constraints on how quickly information can be shared between given points.
We showed in Theorem 10 that a result analogous to that for networks exists
in this context, and that the optimal distributed control problem is convex when
the transmission delay between any pair of points is less than the corresponding
propagation delay, provided that a similar triangle inequality holds.

We further showed in Theorem 13 that if we apply this result to the special
case of spatial invariance, it allows us to broadly extend the class of such systems
amenable to convex controller synthesis, to systems in an arbitrary number of
dimensions supported by any subadditive propagation function.

Delay constraints which allow for convex controller synthesis have thus been
simply characterised, unified, and broadly generalised.
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