
An Approximate Dynamic Programming

Approach to Decentralized Control of

Stochastic Systems

Randy Cogill1, Michael Rotkowitz2, Benjamin Van Roy3, and Sanjay Lall4

1 Department of Electrical Engineering, Stanford University.
rcogill@stanford.edu

2 Department of Aeronautics and Astronautics, Stanford University.
rotkowitz@stanford.edu

3 Departments of Management Science and Engineering and Electrical
Engineering, Stanford University.
bvr@stanford.edu

4 Department of Aeronautics and Astronautics, Stanford University.
lall@stanford.edu

Summary. We consider the problem of computing decentralized control policies
for stochastic systems with finite state and action spaces. Synthesis of optimal de-
centralized policies for such problems is known to be NP-hard [1]. Here we focus
on methods for efficiently computing meaningful suboptimal decentralized control
policies. The algorithms we present here are based on approximation of optimal Q-
functions. We show that the performance loss associated with choosing decentralized
policies with respect to an approximate Q-function is related to the approximation
error.

1 Introduction

The study of decentralized control is motivated by the fact that, in many
practical control applications, control decisions must be made using incom-
plete information about the system state. In particular, it is common that
multiple interacting decision makers must make control decisions at each time
period, and each decision must be made using a different limited observation
of the overall system state. The complicating factor in such problems is that
the impact of individual decisions is system-wide.

We consider the problem of determining decentralized control policies for
stochastic systems. Decentralized control problems have been well studied
over the past several decades [2], and it is generally recognized that decen-
tralized problems are often considerably more complex than their centralized
counterparts. For example, it has been shown in [1] that computing optimal

B.A. Francis et al. (Eds.): Control of Uncertain Systems, LNCIS 329, pp. 243–256, 2006.
© Springer-Verlag Berlin Heidelberg 2006



244 R. Cogill et al.

policies for a simple single stage control problem is NP-hard, whereas the
corresponding centralized problem is trivial. This single-stage problem arises
as a special case of the problems considered here. With this in mind, our fo-
cus is on efficient computation of meaningful suboptimal decentralized control
policies.

In stochastic control problems, the relevant information required for deci-
sion making can be captured by a Q-function. When a Q-function has special
structure, we can easily compute a decentralized policy which is greedy with
respect to this function. The approach taken here can be interpreted as ap-
proximating the optimal Q-function for a problem by one with this special
structure. We show that the performance loss associated with choosing poli-
cies with respect to an approximate Q-function is related to the approximation
error.

A related approach for computing suboptimal policies for specially struc-
tured multi-agent control problems can be found in [3]. The problems con-
sidered there have transition probabilities modeled as a dynamic Bayesian
network and structured single-stage costs. The authors show that by using
specially structured approximations to the cost-to-go function, the required
computations can be simplified.

The approach discussed here resembles a method commonly used to syn-
thesize decentralized control policies for linear time-invariant systems [4].
Semidefinite programming conditions can be formulated for these problems
which produce stabilizing decentralized control laws when they are satisfied.
These conditions involve a simultaneous search for a stabilizing control law
and a Lyapunov function proving stability. The Lyapunov functions used are
restricted to have special structure, where the structure is chosen to facilitate
the search for a decentralized control law.

2 Dynamic Programming Background

Here we consider discrete-time stochastic control problems. The systems con-
sidered here have a finite state space X , and a finite set U of actions available
at each time step. Taking action u ∈ U when in state x ∈ X incurs a cost
g(x, u). After taking action u in state x, the system state in the next time
period is y ∈ X with probability p(y |x, u).

The goal is to find a rule for choosing actions which minimizes some mea-
sure of the overall cost incurred. A rule for choosing actions is commonly
referred to as a policy. A static state-feedback policy µ : X → U is a rule
which chooses an action based on the current system state.

Here we consider the problem of choosing a policy to minimize the expected
total discounted cost :

Jµ(x) = E

� ∞8
t=0

αtg(xt, µ(xt))

===== x0 = x

�
,



An Approximate Dynamic Programming Approach 245

where 0 ≤ α < 1. For any policy µ, we can compute the cost-to-go Jµ by
solving the linear equations

Jµ(x) = g(x, µ(x)) + α 
8
y∈X

p(y|x, µ(x))Jµ(y). (1)

We can write these equations in matrix-vector notation as Jµ = gµ +αPT
µ Jµ.

Here, gµ is the cost vector evaluated for the policy µ, Pµ is the state transition
matrix associated with the policy µ, and PT

µ is its transpose. We can further
simplify this equation using the shorthand Jµ = TµJµ, where the operator Tµ

maps a vector J to the vector gµ + αPT
µ J . This notation will be convenient

in later sections.
For the expected total discounted cost criterion, there is a single policy

which minimizes the cost-to-go for all initial states. Also, the minimum cost-
to-go J∗ is unique and satisfies Bellman’s equation

J∗(x) = min
u∈U

g(x, u) + α
8
y∈X

p(y|x, u)J∗(y)

 . (2)

We can simplify notation by writing this equation as J∗ = TJ∗, where the
operator T maps a vector J to the vector TJ defined as

(TJ)(x) = min
u∈U

g(x, u) + α
8
y∈X

p(y|x, u)J(y)

 .

It is often useful to work directly with the expression in the right hand
side of Bellman’s equation. This is often referred to as a Q-function, and the
optimal Q-function Q∗ is given by

Q∗(x, u) = g(x, u) + α
8
y∈X

p(y|x, u)J∗(y).

The optimal policy µ∗ is obtained from Q∗ by taking µ∗(x) = argminuQ∗(x, u).
Like cost-to-go functions, we can compute the Q-function associated with a
particular policy µ by solving the linear equations

Qµ(x, u) = g(x, u) + α
8
y∈X

p(y|x, u)Qµ(y, µ(y)).

We can introduce an operator Fµ and write the equations above simply as
Qµ = FµQµ. Also, Bellman’s equation can be expressed directly in terms of
Q functions as

Q∗(x, u) = g(x, u) + α
8
y∈X

p(y|x, u)
$
min

w
Q∗(y, w)

+
, (3)



246 R. Cogill et al.

with Q∗ being the unique solution. As before, we can express this equation in
the notation Q∗ = FQ∗, where the operator F maps a vector Q into a vector
FQ satisfying

(FQ)(x, u) = g(x, u) + α 
8
y∈X

p(y|x, u)
$
min

w 
Q(y, w)

+
Q-functions will play an important role in the upcoming material.

We will conclude this section by mentioning that the operators Tµ, T , Fµ,
and F have some important properties [5]. The following properties, presented
only in terms of F for convenience, hold for Tµ, T , Fµ, and F :

• Contractiveness: For any Q1 and Q2, (FQ1−FQ2(∞ ≤ α(Q1 −Q2(∞. As
a result of the contraction mapping theorem, F has a unique fixed point
Q∗ which is obtained as the limit of the sequence {FnQ} for any Q.

• Monotonicity: For any Q1 and Q2, if Q1 ≤ Q2, then FQ1 ≤ FQ2.

These properties will be used in the proofs of some upcoming theorems.

3 Computing Decentralized Policies

The problem of computing decentralized policies is considerably more com-
plex than the corresponding problem of computing centralized policies. For
example, we can consider the simple special case where α = 0. In this case, the
optimal centralized policy is simply µ∗(x) = argminu g(x, u). On the other
hand, we can consider a simple decentralized variant of this problem where the
state is described by two state variables x1 and x2 and each action is described
by two decision variables u1 and u2. The desired decentralized policy µ chooses
u1 based only on x1 and chooses u2 based only on x2. Unlike the centralized
problem, there may not be one decentralized policy which achieves lower cost
than all other decentralized policies at all states. Therefore, the problem of
minimizing expected cost may not be well defined until we specify an initial
probability distribution on the states. Once an initial distribution is specified,
the resulting optimization problem is NP-hard [1]. This example highlights
the importance of efficient algorithms for computing meaningful suboptimal
policies for decentralized control problems.

In the systems we consider, the action taken at each time period can be
described by a collection of decision variables as u = (u1, . . . , uk). The action
space for this system is U = U1×· · ·×Uk. Likewise, the state of the system is
described by a collection of state variables and the corresponding state space is
X = X1×· · ·×Xp. In general, the policies produced by dynamic programming
determine each action ui based on the entire state x = (x1, . . . , xp). However,
we are interested in computing policies where each decision is only based on
a subset of the state variables. A decentralized policy is a policy in which
each action ui depends only on some specified subset of the state variables
x1, . . . , xp.



247

The required dependencies of actions on state variables is typically referred
to as the information structure of the desired policy. We will use the following
notation to describe the information structure of a particular policy. The set
of variables which may be used to decide action i is denoted as

Ii = {j | ui depends on xj}.

In particular, Ii gives the indices of the state variables that action i depends
on. The Cartesian product of the spaces of the variables used to decide action
i is denoted as

Xi = ×
j∈Ii

Xj .

Using this notation, a decentralized policy is a set of functions µi : Xi → Ui

for i = 1, . . . , k.
Recall that the optimal centralized policy is µ∗(x) = argminuQ∗(x, u),

where Q∗ is obtained as the unique solution to Bellman’s equation. Consider a
policy µ(x) = argminu

�Q(x, u), where �Q is a function of the form �Q =
9k

i=1 Qi

and each Qi : Xi×Ui → R. Since ui is the only decision variable appearing in
the argument of Qi, choosing u to be argminu

�Q(x, u) is equivalent to choosing
each ui to be argminui

Qi(x, ui). Also, since the only state variables appearing
in the argument of Qi are those in Xi, the choice of ui only depends on
the values of the variables in Xi. Therefore, the policy µ is decentralized
since each decision ui is determined only in terms of the state variables in
Xi. This suggests an algorithm, in which an appropriately structured �Q is
chosen to approximate Q∗, and a decentralized policy is obtained from �Q.
Such an algorithm will be presented in the next section. Theorem 1 justifies
this approach by showing that the suboptimality of the performance achieved
by µ is related to the approximation error between �Q and Q∗.

Before presenting Theorem 1, we will introduce some notation. Let Qµ

denote the function Q evaluated for the policy µ. That is, Qµ(x) = Q(x, µ(x)).
We must be careful to make the distinction between Qµ : X → R, the function
Q evaluated for the policy µ, and Qµ : X ×U → R, the Q-function associated
with following the policy µ from time t = 1 onward. Also, let ( · (1,ν denote
the weighted 1-norm, defined as

(J(1,ν =
8

x

ν(x)|J(x)|,

where the weights ν are positive. For the upcoming theorem, we will restrict
ourselves, without loss of generality, to weights which satisfy

9
x ν(x) = 1.

Theorem 1. Suppose Q satisfies Q ≤ FQ. If µ is the policy defined as µ(x) =
argminuQ(x, u), then the following bound holds

(Jµ − J∗(1,ν ≤ 1

1− α
(Q∗µ −Qµ(1,ω ,

An Approximate Dynamic Programming Approach



248 R. Cogill et al.

where ν is an arbitrary probability distribution on X and ω is the probability
distribution defined as ω = (1− α)(I − αPµ)−1ν.

Proof. First we will show that ω is a probability distribution. Let e denote
the vector with 1 for each entry. Since since eT ν = 1 and eT P t

µ = eT for all t,

eT ω = (1− α)eT (I − αPµ)−1ν

= (1− α)
∞8

t=0

αteT P t
µν

= (1− α)

∞8
t=0

αteT ν

= 1

Also, since Pµ ≥ 0 and ν ≥ 0 componentwise, ω ≥ 0.

Recall that we require Q ≤ FQ. By monotonicity of F , this implies Q ≤ FnQ
for all n. Since FnQ→ Q∗ for any Q, this implies Q ≤ Q∗. Also, the policy µ
is greedy with respect to Q, so Qµ ≤ J∗ ≤ Jµ. Therefore,

(Jµ − J∗(1,ν ≤ (Jµ −Qµ(1,ν

= νT ((I − αPT
µ )−1gµ −Qµ)

= νT (I − αPT
µ )−1(gµ − (I − αPT

µ )Qµ)

=
1

1− α
ωT ((gµ + αPT

µ Qµ)−Qµ)

Since µ is greedy with respect to Q, we have (FQ)µ = gµ+αPT
µ Qµ. Therefore,

the inequality above can be expressed as

(Jµ − J∗(1,ν ≤ 1

1− α
((FQ)µ −Qµ(1,ω

Since Qµ ≤ (FQ)µ ≤ Q∗µ, we have the result

(Jµ − J∗(1,ν ≤ 1

1− α
(Q∗µ −Qµ(1,ω

�

A theorem similar to Theorem 1, based only on cost-to-go functions, can be
found in [6].

4 The Linear Programming Approach

It is well known that the solution to Bellman’s equation J∗ can be obtained
by solving a linear program [7]. We can determine Q∗(x, u) = g(x, u) +



249

α 
9

y∈X p(y|x, u)J∗(y) once J∗ is known. In the previous section, we outlined
a method for computing a decentralized policy based on an approximation of
Q∗. In this section, we present an algorithm for computing such an approx-
imation. This algorithm is based on an extension of the linear programming
approach to solving Bellman’s equation. The standard linear programming
formulation is extended to explicitly include Q. The need for including Q will
become clear shortly.

Theorem 2. The solutions to the equations (2) and (3) can be obtained by
solving the linear program

maximize: 
9

x∈X
9

u∈U Q(x, u)

subject to: Q(x, u) ≤ g(x, u) + α 
9

y∈X p(y|x, u)J(y) for all x ∈ X , u ∈ U
J(x) ≤ Q(x, u) for all x ∈ X , u ∈ U

Proof. Q∗ satisfies

Q∗(x, u) = g(x, u) + α 
8
y∈X

p(y|x, u)
$
min

w 
Q∗(y, w)

+
.

Also, J∗(x) = minu Q∗(x, u) ≤ Q∗(x, u) for all x, u. Therefore, Q∗ and J∗ are
feasible for this LP.
Also, since J(x) ≤ Q(x, u) for any feasible J , any feasible Q satisfies

Q(x, u) ≤ g(x, u) + α
8
y∈X

p(y|x, u)J(y)

≤ g(x, u) + α
8
y∈X

p(y|x, u)
$
min

w
Q(y, w)

+
,

or more succinctly Q ≤ FQ. By monotonicity of F , this implies Q ≤ FnQ for
all n. Since FnQ→ Q∗ for any Q, any feasible Q satisfies Q ≤ Q∗. Therefore
Q∗ is the optimal feasible solution. �

Note that the usual LP approach to solving Bellman’s equation only involves
J , and therefore contains fewer variables and constraints. The explicit inclu-
sion of Q in the linear program is required because we will require Q to have
special structure in order to obtain a decentralized policy. In general, requir-
ing J to have some special structure is not sufficient to guarantee that Q will
have the required structure.

Using this linear program, we have the following algorithm for computing
a decentralized policy.

An Approximate Dynamic Programming Approach



250 R. Cogill et al.

Algorithm 1.

1. For any information structure, let �Q =
9k

i=1 Qi and �J =
9k

i=1 Ji, where
Qi : Xi × Ui → R and Ji : Xi → R.

2. For arbitrary positive values ω(x), solve the linear program

maximize:
9

x∈X
9

u∈U ω(x) �Q(x, u)

subject to: �Q(x, u)≤g(x, u)+α
9

y∈X p(y|x, u) �J(y) for all x ∈ X , u ∈ U�J(x) ≤ �Q(x, u) for all x ∈ X , u ∈ U ,

3. Let µ(x) = argminu
�Q(x, u). This policy is decentralized with the desired

information structure.

It is not immediately clear how the optimization problem solved in Algorithm
1 relates to the cost-to-go achieved by µ. We will show that this optimization
problem is equivalent to minimizing a weighted norm of the error between
Q∗ and �Q subject to some constraints. From Theorem 1, this error is directly
related to the performance achieved by µ.

Theorem 3. The linear program in Algorithm 1 is equivalent to

minimize: (Q∗ − �Q(1,Ω

subject to: �Q ≤ F �Q,

where Ω(x, u) = ω(x) for all x ∈ X and u ∈ U .

Proof. From the proof of Theorem 2, �Q is feasible if and only if �Q ≤ F �Q,
which implies �Q ≤ Q∗. Therefore, for any feasible �Q

( �Q−Q∗(1,Ω =
8
x∈X

8
u∈U

ω(x)(Q∗(x, u)− �Q(x, u))

= −
8
x∈X

8
u∈U

ω(x) �Q(x, u) +
8
x∈X

8
u∈U

ω(x)Q∗(x, u).

Since
9

x∈X
9

u∈U ω(x)Q∗(x, u) is constant, minimizing this quantity is equiv-

alent to maximizing
9

x∈X
9

u∈U ω(x) �Q(x, u), the objective in the original
LP. �

From the previous theorem, we see that Algorithm 2 seeks to minimize the
approximation error ( �Q − Q∗(1,Ω subject to the constraint �Q ≤ F �Q. For

any policy µ̂ and any probability distribution ω, the bound ( �Qbµ −Q∗
bµ(1,ω ≤

( �Q−Q∗(1,Ω holds. This, together with Theorem 1, assures us that Algorithm



251

1 attempts to produce a decentralized policy �µ with performance close to that
of an optimal centralized policy.

When no structure is imposed on �Q (i.e., the centralized case), the weights
ω in the objective function are unimportant since we obtain Q∗ for any positive
weights. However, when �Q has structure, the weights chosen will affect the
quality of the policy obtained. A good choice of weights may be guided by
the interpretation of these weights in Theorem 1. In particular, these weights
impose a tradeoff in the quality of the approximation across the states. Ideally,
we would like to closely approximate states that are visited most often under
any policy. The role of these weights are discussed in greater detail in [6].

For highly decentralized information structures, the number of variables
in the linear program increases linearly with the number of state variables.
Therefore, the number of variables appearing in this linear program is often
significantly less than the number of variables required for computation Q∗.
However, the number of constraints appearing in the linear program is still on
the order of the number of state-action pairs. The application of Algorithm
1 to large-scale problems may still be prohibitive due to the large number
of constraints. Similar problems are encountered in the application of the
approximate linear programming methods of [6] to large problems, however
constraint sampling has been shown to be an effective method for overcoming
this problem [8]. We believe that the analysis and application of constraint
sampling as in [8] will carry over to the problems here, although we have not
explored the details at this point.

5 Example

Here we will apply the algorithm developed in Section 4 to an example prob-
lem. The problem considered is the following. Two robots are placed in oppo-
site corners of a region, and calls for services to be performed by the robots
originate from various points within the region. This is depicted in Figure 1.
Calls for service are sent to both robots. Each robot, if idle, must make a deci-
sion of whether or not to service the current location. Each robot must make
this decision without knowledge of the other robot’s status (idle or busy),
resulting in a decentralized decision making problem.

For this problem, it is not clear which strategy the robots should follow.
If both robots, when idle, respond to all calls for service, then we will often
have both robots responding to calls when only one is required to service the
location. On the other hand, if we partition the set of locations and assign
each location to a single robot, then locations will often go unserviced when
their assigned robot is busy at another location. We will see that both of these
strategies are typically outperformed by strategies which assign a single robot
to some locations, and both robots to others.

In our model, events occur at discrete time periods t = 0, 1, . . .. The
system state has three components x = (x1, x2, x3), where the compo-

An Approximate Dynamic Programming Approach



252 R. Cogill et al.

Fig. 1. Robots are stationed in the lower left and upper right corners, and respond
to calls for service at the locations shown by circles.

nents are described as follows. At time t, robot i is in state xi(t) ∈ Xi =
{robot i idle, robot i busy}, depending on whether or not it is idle or
currently serving a location. For a problem with N locations, the call for
service at time t is

x3(t) ∈ X3 = {location 1, . . . , location N, no service requested}.
We make the restriction that only one call for service may be active at a time.
At time t, if robot i is idle and there is an active call for service, robot i chooses
an action ui(t) ∈ Ui = {respond, don’t respond}. The overall state space
for this system is X = X1×X2×X3. The overall action space is U = U1×U2.

At each time period, calls for service are independent and identically dis-
tributed. Therefore, if there is no response to a call, it does not persist and
is replaced by a new call (or no call) in the following time period. Let p3(y3)
give the probability of calls for service in each location. If a robot is busy ser-
vicing a location in any time period, it remains busy in the following period
with probability 0.9. Let pi(yi|xi, ui) give the probability that robot i is busy
or idle in the following time period given its current state and action. The
dynamics of this system are described by the transition probability function
p(y|x, u) = p1(y1|x1, u1)p2(y2|x2, u2)p3(y3).

The control objective is expressed through costs that are incurred in each
time period. Costs incurred for servicing a location are based on the distance
required to reach the location and the time required to complete servicing.
Upon responding to a location, a cost of 2(distance to location) is in-
curred by each robot which responds (i.e., the cost of getting there and back).
For our example, the region considered is the unit square, and the distance
used is the Euclidean distance from the the robot’s corner to the call location.
For each time period that a robot is busy, it incurs an additional cost of 0.25
units. These servicing costs for each robot are given by a function gi(xi, ui).



253

Fig. 2. The decentralized policy computed in Example 1. Lighter shaded circles are
served only by robot 1, darker shaded circles are served only by robot 2, and circles
with both shades are served by both robots.

0 5 10 15 20 25 30 35 40 45
7300

7310

7320

7330

7340

7350

7360

7370

7380

computed
respond closest
respond all

Fig. 3. The total discounted cost as a function of state for the policies used in
Example 1.

Additionally, if neither robot responds to a call, a large penalty is incurred. In
this case, we use a penalty of 8 units. These penalties are given by a function
g3(x1, x2, u1, u2). The overall per-period costs for this problem are given by
g(x, u) = g1(x1, u1) + g2(x2, u2) + g3(x1, x2, u1, u2). Our goal is to determine
control policies µ1 : X1 ×X3 → U1 and µ2 : X2 ×X3 → U2 which make the
total discounted cost as small as possible (with α = 0.999).

An Approximate Dynamic Programming Approach



254 R. Cogill et al.

Fig. 4. The decentralized policy computed in Example 2. Lighter shaded circles are
served only by robot 1, darker shaded circles are served only by robot 2, and circles
with both shades are served by both robots.

0 5 10 15 20 25 30 35 40 45
7150

7160

7170

7180

7190

7200

7210

7220

7230

7240

7250
computed
respond closest
respond all

Fig. 5. The total discounted cost as a function of state for the policies used in
Example 2.

We applied Algorithm 1 to several instances of this problem with N = 10.
The results of the first example are shown in Figures 2 and 3. In this exam-
ple, a decentralized policy is computed and compared against two heuristics,
‘respond closest’ and ‘respond all’. In the ‘respond closest’ policy, robots only
respond to the locations closest to them. In the ‘respond all’ policy, each robot
responds to every location. The results of the second example are shown in
Figures 4 and 5. It is interesting to note the difference between the perfor-



255

mance of the heuristic policies in the two examples. In particular, relative
performance of the two heuristic policies depends on the particular problem
instance. The computed policies outperform both heuristics in both examples.

6 Conclusions

Here we considered the problem of designing decentralized control policies
for stochastic systems. An algorithm based on linear programming was pre-
sented. This algorithm obtains a decentralized policy from a function with
special structure that approximates the optimal centralized Q-function. The
performance loss associated with the resulting decentralized policy was shown
to be related to the approximation error.

References

1. J. Tsitsiklis and M. Athans, “On the complexity of decentralized decision making
and detection problems,” IEEE Trans. Automatic Control, vol. 30, no. 5, pp.
440–446, 1985.

2. N. Sandell, P. Varayia, M. Athans, and M. Safonov, “Survey of decentral-
ized control methods for large-scale systems,” IEEE Trans. Automatic Control,
vol. 26, pp. 108–128, 1978.

3. C. Guestrin, D. Koller, and R. Parr, “Multiagent planning with factored MDPs,”
Advances in Neural Information Processing Systems, vol. 14, pp. 1523–1530,
2001.

4. J. Bernussou, P. Peres, and J. Geromel, “Robust decentralized regulation: a
linear programming approach,” Proc. IFAC Symposium on Large Scale Systems,
vol. 1, pp. 133–136, 1989.

5. D. Bertsekas and J. Tsitsiklis, Neuro-dynamic Programming. Athena Scientific,
1996.

6. D. de Farias and B. V. Roy, “The linear programming approach to approximate
dynamic programming,” Operations Research, vol. 51, no. 6, pp. 850–865, 2003.

7. A. Manne, “Linear programming and sequential decisions,” Management Sci-
ence, vol. 6, no. 3, pp. 259–267, 1960.

8. D. de Farias and B. V. Roy, “On constraint sampling in the linear programming
approach to approximate dynamic programming,” to appear in Mathematics of
Operations Research, submitted 2001.

9. M. Aicardi, F. Davoli, and R. Minciardi, “Decentralized optimal control of
Markov chains with a common past information set,” IEEE Trans. Automatic
Control, vol. 32, no. 11, pp. 1028–1031, 1987.

10. R. Cogill, M. Rotkowitz, B. V. Roy, and S. Lall, “An approximate dynamic pro-
gramming approach to decentralized control of stochastic systems,” Proceedings
of the 2004 Allerton Conference on Communication, Control, and Computing,
pp. 1040–1049, 2004.

11. Y. Ho, “Team decision theory and information structures,” Proceedings of the
IEEE, vol. 68, no. 6, pp. 644–654, 1980.

An Approximate Dynamic Programming Approach



256 R. Cogill et al.

12. K. Hsu and S. Marcus, “Decentralized control of finite state Markov processes,”
IEEE Trans. Automatic Control, vol. 27, no. 2, pp. 426–431, 1982.

13. C. Papadimitriou and J. Tsitsiklis, “Intractable problems in control theory,”
SIAM Journal on Control and Optimization, vol. 24, no. 4, pp. 639–654, 1986.

14. ——, “The complexity of Markov decision processes,” Mathematics of operations
research, vol. 12, no. 3, pp. 441–450, 1987.

15. M. Puterman, Markov decision processes. John Wiley and Sons, New York,
1994.

16. R. Srikant and T. Başar, “Optimal solutions in weakly coupled multiple decision
maker Markov chains with nonclassical information,” Proceedings of the IEEE
Conference on Decision and Control, pp. 168–173, 1989.


	1 Introduction
	2 Dynamic Programming Background
	3 Computing Decentralized Policies
	4 The Linear Programming Approach
	5 Example
	6 Conclusions
	References



