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A Convex Characterization of Multidimensional Linear Systems
Subject to SQI Constraints

Şerban Sabău, Nuno C. Martins, and Michael C. Rotkowitz

Abstract—This technical note proposes a convex characteriza-
tion of the set of all stable closed-loop linear systems that are
obtained from a given plant, which may be multidimensional, by
interconnecting it in feedback with controllers that satisfy a certain
pre-selected constraint. We take an approach that is particularly
useful when a doubly-coprime factorization of the plant is difficult
to obtain, and a stable stabilizing controller may not exist (the plant
is not strongly-stabilizable) or when one may be difficult to find;
most related work requires one of these. We adopt the so-called
coordinate-free approach, which, unlike Youla’s parametrization,
does not rely on a doubly-coprime factorization of the plant. We
show that if constraints which satisfy a condition called strong
quadratic invariance (SQI) are imposed on the controllers then the
set of all stable closed-loop multidimensional linear systems has
a convex representation, and norm-optimal control problems can
be cast in convex form. Although the SQI condition is in general
slightly stronger than quadratic invariance (QI), which was devel-
oped in related work, they are equivalent for common classes of
problems arising in decentralized control.

Index Terms—Convex, decentralized control, linear Feedback
Control Systems, multidimensional systems, optimal Control.

I. INTRODUCTION

The design of norm-optimal structurally-constrained feedback sys-
tems is, in general, a hard problem, partly due to the lack of convexity
that results from the interaction constraints [16] associated with the
restrictions imposed on the controller. The theory developed in [10]
characterizes cases for which the design of norm-optimal structurally-
constrained controllers is tractable. In particular, [10] introduces a con-
vex parametrization of all stabilizing controllers whose existence is
determined by an algebraic test called quadratic invariance (QI), which
takes into account the plant and the constraints imposed on the con-
troller. The approach in [10] is valid for strongly–stabilizable plants;
that is, plants for which a controller exists that is both stable and
stabilizing. Another condition was developed for plants which are not
necessarily linear or time-invariant [12], which also applied to strongly–
stabilizable plants, using a parametrization from [1]. Recent work in
[11] shows, for the unidimensional1 LTI case, that it is possible to ob-
tain a convex parametrization for all stabilizing controllers constrained
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1Unidimensional refers to the standard case in which there is only one in-

dependent time variable. Unidimensional systems can have multiple inputs and
outputs.

to a QI subspace, even when the plant is not strongly–stabilizable. The
method in [11] uses a structured doubly-coprime factorization of the
plant with which Youla’s classical parametrization is extended to ac-
count for QI subspace constraints on the controller. Recent results in
[18], [19] have addressed the issue of structured state-space realizabil-
ity of certain classes of structured-constrained controllers.

The main contribution of this technical note is to provide a new con-
vex characterization of all closed-loop maps and associated controllers
when these are restricted to a preselected strongly quadratically invari-
ant (SQI) set. Following [14], we consider that the SQI set is a module
over a ring of proper rational multidimensional transfer functions. As
is shown in [14, Section VI], this framework is general enough to deal
with sparsity and delay constraints, and it has the advantage that cer-
tain key invariance properties can be established without the need for
intricate topology considerations. It is immediate from their definitions
that if a module is SQI then it is also QI, and the converse also holds
in many cases of interest, such as when it represents sparsity or delay
constraints. In comparison to prior results, our approach has the follow-
ing advantages: i) Instead of relying on a structured doubly-coprime
factorization of the plant, our method only needs an initial admissible
stabilizing controller. (see Section I-A) ii) The aforementioned initial
controller does not need to be stable, which implies that our method
is valid for non-strongly stabilizable plants. Our approach is based on
the coordinate-free method [3]–[9], which was originally devised in an
unconstrained setting, and here is generalized to allow SQI structural
constraints on the controller.

A. Comparison with the Youla-Like Method in [11]

In comparison with [11], for the unidimensional case, the character-
ization proposed here requires parameters specified by larger matrices
(see Remark III.3) and assumes that the constraints are encoded in an
SQI module, as opposed to the more general QI subspaces allowed in
[11]. However, the coordinate-free approach adopted here has the ad-
vantage that it does not rely on the intricate constrained doubly-coprime
factorization needed in [11]. Although [15] has shown that every stabi-
lizable multidimensional system has a doubly-coprime factorization, it
also drew attention to the difficulty of computing one in practice. As a
result, the characterization proposed here may be more suitable to deal
not only with certain unidimensional systems, but also with multidi-
mensional systems for which the type of constrained doubly-coprime
factorization required in [11] has not been shown to exist and even if it
does it would be no less difficult to obtain than the unconstrained case
considered in [15]. Our approach can also account for delays and may
apply to cases when the plant and controller are restricted to an integral
domain, for which a coprime factorization does not exist [2].

II. PRELIMINARIES

We adopt the algebraic formulation proposed in [14] that considers
linear multidimensional systems represented by transfer functions that
are real rational functions of d and s, which denote a vector of delay
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Fig. 1. Standard unity feedback interconnection.

operators (d1 , . . . , dn d
) and a vector of transform domain variables

(s1 , . . . , sn s ), respectively. The authors of [14] use R(s, d) to denote
the commutative ring with identity that is obtained from the afore-
mentioned set by selecting the elements that are proper with respect
to each entry of s. Multiplication and addition in R(s, d) are carried
out using the standard rules for rational functions. Notice that using
vector-valued d we can consider nd different delays, and vector-valued
s allows multidimensional transfer functions in the Laplace (or Z) do-
main that represent systems with ns independent variables2 that can be
continuous (or discrete).

Henceforth, we assume that s and d are pre-selected and we use
P to denote the subset of R(s, d) whose elements are proper in each
entry of d. The subset of P whose elements are strictly proper in each
entry of s is denoted with3 Ps . We assume that P and Ps inherit their
sum and multiplication operators from R(s, d), which makes them a
commutative ring with identity and a commutative ring, respectively.

Definition II.1: Consider that A is a pre-selected commutative sub-
ring of P whose elements we call stable. An example of a valid choice
for A is the set of all elements of P that correspond to bounded-input
bounded-output systems. A comprehensive discussion of stability con-
cepts for multidimensional systems is given in [17].

By a natural extension of notation, we use Pm ×n , Pm ×n
s and Am ×n

to denote the sets of matrices with m rows by n columns whose entries
are in P , Ps and A, respectively. Matrix multiplication and addition
within each set are carried out in the underlying ring that contains the
entries. We refer to any matrix with entries in P as TFM, which stand
for (multidimensional) transfer function matrix.

A. Feedback Stabilization of a Generalized Plant: Notation
and Framework

We consider the feedback system displayed in Fig. 1, in which G
and K represent a plant and a feedback controller, respectively.

Assumption II.2 (Well-Posedness): From this point onward, we as-
sume that K is in P n u ×n y and G is in P

n y ×n u
s .

From the proof of [14, Theorem 10], we conclude that Assump-
tion II.2 suffices to guarantee that (I − KG) and (I − GK) have
well-defined inverses in P n u ×n u and P n y ×n y , respectively. We then
proceed to define H(G, K) as the TFM from [νT

2 νT
1 ]T to [yT uT ]T ,

which can be written as

H(G, K)
def
=

[
(I − GK)−1 G(I − KG)−1

K(I − GK)−1 (I − KG)−1

]
. (1)

If the entries of H(G, K) are in A, we say that K is a stabilizing
controller for G or equivalently that K stabilizes G.

2The unidimensional case, in which time is the sole independent variable, is
characterized by ns = 1.

3The sets P and Ps used here are subsets of R(s, d)p and R(s, d)sp as
defined in [14], respectively.

III. THE COORDINATE-FREE APPROACH

This section gives a brief overview of the results in [6]–[9],
which develop the so-called coordinate-free approach to linear control
design. Our discussion emphasizes concepts that are used throughout
this technical note.

A. Convex Characterization of All Stable Closed-Loop TFMs

For a given G, the coordinate-free approach ([6]–[9]) yields a convex
parametrization of the set of closed-loop TFMs H(G, K) that can be
achieved by a stabilizing controller K . Unlike Youla’s classical method,
it does so without a doubly-coprime factorization of the plant, but it
requires prior knowledge of a stabilizing controller. The coordinate-
free method was pursued in [3]–[9], as a viable approach for when a
stabilizing controller is known and the coprime factorizability of the
plant is not, either because it is nonexistent or difficult to compute (e.g.,
for multidimensional systems).

Assumption III.1: From this point onwards, we assume that G in
P

n y ×n u
s is given and fixed. Hence, we will simplify our notation

by omitting G from the definition of sets and maps even when they de-
pend on G.

We define the set of all stable closed-loop TFMs as follows:

H
def
=

{
H(G, K) ∈ A(n u +n y )×(n u +n y )

∣∣∣ K ∈ P n u ×n y

}
.

The following theorem is derived from statements in [7, Propo. 4
and 5], and will be instrumental in the sequel. It establishes a convex
parametrization of all stable closed-loop maps, and associated stabiliz-
ing controllers.

Theorem III.2: Suppose that K0 in P n u ×n y is a controller that
stabilizes G.

1) [7, Proposition 4] The following equality holds:{
Ω(Q, K0 )

∣∣ Q ∈ A(n u +n y )×(n u +n y )
}

= H

where, for Q in A(n u +n y )×(n u +n y ) , Ω(Q, K0 ) is defined as

Ω(Q, K0 )
def
= H(G, K0 ) +

(
H(G, K0 ) −

[
In y 0
0 0

])

× Q

(
H(G, K0 ) −

[
0 0
0 In u

])
. (2)

Here, In y and In u denote the identity matrices of dimension ny and
nu , respectively.

2) [7, Proposition 5] The following equality holds:{
H(

G,K(Q, K0 )
) ∣∣∣ Q ∈ A(n y +n u )×(n y +n u )

}
= H (3)

where K(Q, K0 ) is the controller defined as

K(Q, K0 )
def
= Ω21 (Q, K0 )Ω−1

11 (Q, K0 ) (4)

= Ω−1
22 (Q, K0 )Ω21 (Q, K0 ) (5)

and where we adopt the following partition for Ω(Q, K0 ):

n y︷ ︸︸ ︷ n u︷ ︸︸ ︷
Ω(Q, K0 ) =

[
Ω11 (Q, K0 ) Ω12 (Q, K0 )
Ω21 (Q, K0 ) Ω22 (Q, K0 )

] }ny

}nu .
(6)

Furthermore, for every Q ∈ A(n u +n y )×(n u +n y ) , the controller K(Q,
K0 ) is proper.

Remark III.3: Note that the dimensions of the parameter Q are not
those of the associated controllerK(Q, K0 ), as they would be in Youla’s
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classical parametrization; instead, our version of Q has the same num-
ber of columns and rows as H(G, K).

B. The Disturbance Attenuation Problem via the
Coordinate-Free Approach

The following is a standard norm-optimal control problem:

minimize
K stabilizes G
K ∈ Pnu × ny

‖F(P, K)‖ (7)

where F(P, K), which represents the lower-linear fractional transfor-
mation of a given proper generalized plant P with controller K , is
defined as follows:

F(P, K)
def
= Pz w + Pz u K

(
I − GK

)−1
Py w . (8)

Here, F(P, K) can be viewed as the TFM from an input w to a
performance output z, while Pz w ∈ P n z ×n w , Pz u ∈ P n z ×n u , Py w ∈
P n y ×n w and G ∈ P

n y ×n u
s represent the components of P relating w

and z with u and y. In (7), ‖ · ‖ represents a pre-selected norm over a
vector space that embeds P n z ×n w .

The following result shows that F(P, K) can be expressed as an
affine map of the parameter Q. The proof is outlined in [9, Section IV].

Theorem III.4: If K0 in P n u ×n y is a controller that stabilizes G
then the following holds for all Q in A(n u +n y )×(n u +n y ) :

F(
P,K(Q, K0 )

)
= T1 − T2QT3 , (9)

where T1 , T2 , and T3 , are the TFMs defined as

T1
def
= Pz w + Pz u K0 (I − GK0 )−1Py w ,

T2
def
=

[
Pz u K0 (I − GK0 )−1 Pz u (I − K0G)−1

]
,

T3
def
=

[
(I − GK0 )−1Py w

K0 (I − GK0 )−1Py w

]
. (10)

Remark III.5: The identity in (3) and Theorem III.4 imply that the
following holds:

{F(P, K) |K ∈ P n u ×n y , K stabilizes G}
= {T1 − T2QT3 |Q ∈ A(n u +n y )×(n u +n y )} (11)

and the standard problem in (7) is equivalent to the following model-
matching problem [9]:

minimize
Q∈A(n u + n y )×(n u + n y )

‖ T1 − T2QT3‖ . (12)

More specifically, problems (7) and (12) achieve the same value, and
Q∗ is a solution of (12) if and only if K∗ = K(Q∗, K0 ) is a solution
of (7).

Remark III.6: Since we use [9] throughout this technical note, we
need to note that there is a typo in [9, Section III]. Namely, the expres-
sion for the controller in [9] is given as Ω21 (Q, K0 )Ω−1

22 (Q, K0 ), but it
should have been Ω−1

22 (Q, K0 )Ω21 (Q, K0 ), as we use in our definition
of K(Q, K0 ).

IV. CONTROL DESIGN SUBJECT TO SQI CONSTRAINTS

Henceforth, we consider that there are structural constraints on the
controller, and we use S to denote the set of admissible controllers. We
follow the framework of [14] in which S is both a subset of P n u ×n y

and a P -module. As is evident from [14], the fact that S is a P -
module enables the study of key invariance properties without the need
for intricate topology considerations. The merits and limitations of
this approach, in comparison to [11] and [10], are further discussed

in Section I-A and [14], respectively. Examples in [14, Section VI]
show how to specify S to impose sparsity and delay constraints on the
controller.

A. Strong Quadratic Invariance (SQI)

Throughout this technical note, we will consider that S is given and
fixed, and we will also assume that it is strongly quadratically invariant
(SQI) with respect to G.

The definition and basic properties of SQI are given below.
Definition IV.1: S is strongly quadratically invariant (SQI) under G

if and only if the following invariance condition holds:

KGJ ∈ S, for all K, J ∈ S.

Remark IV.2: The SQI concept is inspired on the more general
notion of quadratic invariance (QI) proposed in [10]. It follows im-
mediately from their definitions that, for a given G, if S is SQI
then it is also QI, and the converse also holds in many cases of
interest, such as for sparsity and delay constraints. The QI/SQI
equivalence4 for sparsity constraints is shown in [10, Theorem 26],
while the QI/SQI equivalence for delay constraints is clear from the
proofs in [13].

The symmetric control problem, where the plant is symmetric, and
the controller to be designed must be symmetric as well, is an example
of a problem that is QI but not SQI.

The following proposition is a slight adaptation of [10, Lemma 5],
which, as discussed after the proof of [14, Lemma 11], can be proved
using a simple induction argument.

Proposition IV.3: If S is SQI with respect to G, then the following
hold for any non-negative integer n:

J(GK)n ∈ S, for all K, J ∈ S, (13)

(KG)n J ∈ S, for all K, J ∈ S. (14)

The following lemma is important throughout technical note.
Lemma IV.4: The following inclusions hold for any S that is SQI

with respect to G:

J(I − GK)−1 ∈ S for all K, J ∈ S, (15)

(I − KG)−1J ∈ S for all K, J ∈ S. (16)

Proof: We follow the same line of proof adopted for [14,
Theorems 9 and 10]. As it is argued in [14, Theorem 10],
Assumption II.2 guarantees that (I − GK)−1 is a well-defined ele-
ment of P n y ×n y . We can then follow the approach of [14, Theorem 6]
to conclude that, for our G in P

n y ×n u
s and for any K in P n u ×n y there

exist weights {αi,(G ,K )}n y

i=1 in P , such that for any K, J ∈ P n u ×n y ,
the following holds:

J(I − GK)−1 =
n y∑
i=1

αi,(G ,K )J(GK)i−1 . (17)

Now assuming that K, J ∈ S, we apply Proposition IV.3 to (17) and
the assumption that S is a P -module to conclude that (15) holds. The
proof of (16) follows an analogous procedure along with (14). �

B. Norm-Optimal Control Design Subject to SQI

Henceforth, we are concerned with the following problem.

4It should also be noted that the equivalences between the SQI and QI condi-
tions for sparsity and delay constraints, as stated in here, are based on algebraic
manipulations that hold regardless of whether S is a P -module or a subspace.
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Problem IV.5: Let S be SQI with respect to G. Consider the fol-
lowing constrained version of (7):

minimize
K ∈K

‖F(P, K)‖ (18)

where K is the set of admissible stabilizing controllers defined as5

K
def
=

{
K ∈ S |K stabilizes G

}
. (19)

Remark IV.6: Notice that, depending on the choice of the norm for
(18), a minimum may not be attained in K. In fact, an example in [20]
illustrates, for the H∞ norm, that an optimal solution may be unique
and irrational. From [10], we know that a minimum in K always exists
for the H2 norm.

C. A Convex Approach to Problem IV.5

We start by defining the noise sensitivity map W : P n u ×n y →
P n u ×n y as follows:

W(V )
def
= −V (I − GV )−1 , (20)

It is straightforward to verify that (20) is an involution; that is,
W(W(V )

)
= V for any V ∈ P n u ×n y . It is also clear from (15), or

[14, Theorem 10], that if S is SQI with respect to G, then S is invariant
under W .

The following lemma gives a convenient expression for K(Q, K0 ),
and also characterizes a domain set for Q for which the associated
controllers are all admissible and stabilizing.

Lemma IV.7: Suppose that S is SQI with respect to G, and that K0

is in K.
1) The following holds for any Q in A(n y +n u )×(n y +n u ) :

K(Q, K0 ) = W( − Ω21 (Q, K0 )
)

(21)

and Ω21 (Q, K0 ) can be written as

Ω21 (Q, K0 ) =
(
I − K0G

)−1(
K0Q11 + K0Q12K0 + Q21

+ Q22K0 + K0 − K0GK0
)(

I − GK0
)−1

(22)

where we adopt the following conformable partition of Q:

n y︷︸︸︷ n u︷︸︸︷
Q =

[
Q11 Q12

Q21 Q22

]
}ny

}nu .
(23)

2) The following inclusion holds:

Q ∈ TK 0 ⇒ K(Q, K0 ) ∈ K (24)

where TK 0 is a convex set defined as

TK 0

def
=

{
Q ∈ A(n y +n u )×(n y +n u ) |(

K0Q11 + K0Q12K0 + Q21 + Q22K0
) ∈ S

}
. (25)

Proof: The equality in (21) follows from (4) and the expression
for Ω11 (Q, K0 ) that is given in the Appendix in Proposition A.1. The
expression in (22) also follows from Proposition A.1.

Now, suppose Q ∈ TK 0 , and let J̄ = K0Q11 + K0Q12K0 +
Q21 + Q22K0 + K0 − K0GK0 , such that Ω21 (Q, K0 ) = (I −
K0G)−1 J̄(I − GK0 )−1 . We are given that K0 ∈ K ⊂ S, it follows
from SQI that K0GK0 ∈ S, and it follows from the definition of TK 0

5It follows from [9, Lemma 1] that K stabilizes G if and only if it stabilizes the
generalized plant P , with respect to the stability definition given in [9]. Hence,
the set K could have been equivalently defined as {K ∈ S |K stabilizes P }. The
stabilization of generalized plants is not discussed here due to space limitations.

that K0Q11 + K0Q12K0 + Q21 + Q22K0 ∈ S, and thus J̄ ∈ S. It
then follows from (15) and (16) that Ω21 (Q, K0 ) ∈ S. Lastly, since S
is invariant under W , it follows from (21) that K(Q, K0 ) ∈ S, and thus
(24) is proven. �

We now proceed by defining a map which will take controllers back
into the space of Q-parameters.

Definition IV.8: We define Q : P n u ×n y → P (n y +n u )×(n y +n u ) as
follows:

Q(K)
def
=

[
GW(K) − I G − GW(K)G

−W(K) W(K)G

]
. (26)

We now give a lemma showing that this map takes admissible stabi-
lizing controllers to a particular convex set of Q-parameters, which can
then be returned to the original controller with our previously defined
map from Q-paramters to controllers.

Lemma IV.9: Suppose that S is SQI with respect to G and that K0

is in K. The following hold:

K ∈ K ⇒ Q(K) ∈ T , (27a)

K ∈ K ⇒ K(Q(K), K0 ) = K (27b)

where the convex set T is defined as

T
def
=

{
Q ∈ A(n y +n u )×(n y +n u ) |

(JQ11 + Q21 + JQ12L + Q22L) ∈ S, for all J, L ∈ S
}
. (28)

Proof: In order to prove (27a), we start by establishing the following
partition of Q(K), in which we suppress the dependence on K for
simplicity of notation

Q11
def
= GW(K) − I = (I − GK)−1 (29a)

Q12
def
= G − GW(K)G = G(I − KG)−1 (29b)

Q21
def
= −W(K) = K(I − GK)−1 (29c)

Q22
def
= W(K)G = I − (I − KG)−1 (29d)

and in which we also establish equivalent expressions with repeated
use of the push-through formula which will be useful.

From here on, assume that K is chosen in K. We thus have K ∈ S,
and from (15) we conclude that W(K) and thus Q21 are both in
S. It then follows from SQI that for any J, L ∈ S, the terms JQ11 ,
JQ12L and Q22L are in S. Since S is a P -module, we then have
JQ11 + Q21 + JQ12L + Q22L ∈ S.

To prove (27a), it remains to show thatQ(K) ∈ A(n y +n u )×(n y +n u ) .
Since K ∈ K, we know that K stabilizes G, and thus that H(G, K) ∈
A(n y +n u )×(n y +n u ) . Comparing this with the equivalent expressions
for the blocks of Q(K) given in (29), we indeed have Q(K) ∈
A(n y +n u )×(n y +n u ) .

Still assuming that K ∈ K, we now establish (27b)

K(Q(K), K0 )
(21)
= W( − Ω21 (Q(K), K0 )

)
(32)
= W(W(K)

) (a )
= K

where (a) follows from the fact that W is involutory. �
Remark IV.10: We have T ⊂ TK 0 , since one could choose J =

L = K0 in (28). In lieu of (28), we could have equivalently defined

T = {Q ∈ A(n y +n u )×(n y +n u ) |
JQ11 , Q21 , JQ12L, Q22L ∈ S, for all J, L ∈ S},
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as these are easily shown to be equivalent, and this may sometimes be
more desirable to work with. If we were to similarly alter the definition
of our other set of parameters to obtain

T̃K 0 = {Q ∈ A(n y +n u )×(n y +n u ) |
K0Q11 , Q21 , K0Q12K0 , Q22K0 ∈ S},

we would in general have T ⊂ T̃K 0 ⊂ TK 0 .
Remark IV.11: The mapping to the controller with restricted do-

main and co-domain K(·, K0 ) : T → K is surjective, since for any
K ∈ K we can choose Q = Q(K), and then have Q ∈ T and
K(Q, K0 ) = K from (27a) and (27b), respectively.

This is a key fact in the proof of the following theorem. It is also
interesting to note that (27b) holds regardless of the choice of K0 in K.

The following theorem and corollary are our main results. They
establish a convex model-matching formulation for Problem IV.5.

Theorem IV.12: Suppose that S is SQI with respect to G, and that
K0 is in K. The following holds:

{F(P, K) |K ∈ K} = {T1 − T2QT3 |Q ∈ T} (30)

where T1 , T2 , T3 are as given in (10).
Proof: We first establish “⊂” in (30). Given K ∈ K, we choose

Q = Q(K). From (27a), we then have Q ∈ T , and then have the

equalities T1 − T2QT3
(9)
= F(P,K(Q, K0 ))

(27b)
= F(P, K).

We now establish “⊃” in (30). Given Q ∈ T , choose K = K(Q,
K0 ). Since T ⊂ TK 0 , it then follows from (24) that K ∈ K. We then

again have F(P,K(Q, K0 ))
(9)
= T1 − T2QT3 , and (30) is proven. �

The following corollary follows from Remark IV.11 and Theo-
rem IV.12.

Corollary IV.13: Let S be SQI with respect to G, and K0 be in K.
Consider the following problem:

minimize
Q∈T

‖T1 − T2QT3‖. (31)

Problem IV.5 and (31) have the same optimal value, and Problem IV.5
has an optimal solution if and only if (31) has an optimal solution.
In addition, Q∗ is optimal for (31) if and only if K∗ = K(Q∗, K0 ) is
optimal for Problem IV.5.

D. Comparison Between Sets TK 0 , T̃K 0 , and T

It follows immediately from Remark IV.10 and from the proof of
Theorem IV.12 that the set T could be replaced with TK 0 or T̃K 0

in (30), and thus in Corollary IV.13 as well. As we point out in Re-
mark IV.10, the set T is contained in T̃K 0 , which is contained in TK 0 .
This establishes a tradeoff between size versus complexity of represen-
tation because, while T ⊂ T̃K 0 ⊂ TK 0 holds, the representation of
TK 0 is simpler than that of T̃K 0 , which, in turn, is less intricate than
that of T . For a given plant and information structure, one thus has the
latitude to select any of these sets to optimize over, after assessing the
aforesaid tradeoff.

V. CONCLUSIONS

This technical note presents a new convex characterization of all
closed-loop systems which result from applying stabilizing controllers
that satisfy pre-selected constraints to a given plant. The coordinate-free
approach is utilized, the advantages of which include not requiring a
doubly-coprime factorization, which can be difficult to obtain for some
multidimensional plants, nor requiring a stable stabilizing controller,
which only exists for strongly stabilizable plants and may be difficult
to systematically find even when it does exist. Much related work in
optimal stabilizing constrained control requires one of these.

We introduce a condition relating the controller constraints to the
plant called SQI, which is generally slightly stronger than QI, and
equivalent for problem classes of interest in decentralized control. We
show that when the constraints define a module and are SQI, the set
of closed-loop systems that result from using admissible stabilizing
controllers can be represented with affine constraints on the variable
from the coordinate-free parametrization. This representation can be
used to cast constrained norm-optimal control problems in convex form.

APPENDIX

The following proposition establishes a key algebraic identity to
prove Lemma IV.7.

Proposition A.1: Let G in P
n y ×n u
s be given. The following iden-

tities hold for every Q in A(n y +n u )×(n y +n u ) and for every K0 in
P n u ×n y :

Ω11 (Q, K0 ) = In y + GΩ21 (Q, K0 ),

Ω21 (Q, K0 ) = (I − K0G)−1 (K0Q11 + K0Q12K0 + Q21

+ Q22K0 + K0 − K0GK0 )(I − GK0 )−1 .

Proof: The proof follows from (2) and the matrix inversion lemma
(Woodbury formula) applied to the first block-column of Ω(Q, K0 ). �

Lemma A.2: Let G in P
n y ×n u
s be given. The following holds for

all K and K0 in P n u ×n y :

Ω21
(Q(K), K0

)
= −W(K). (32)

Proof: For an arbitrary K in K, substitution of (26) in (22) leads to

Ω21
(Q(K), K0

)
= (I − K0G)−1 (K0Q11 + K0Q12K0 + Q21

+ Q22K0 + K0 − K0GK0 )(I − GK0 )−1

(33)

where we use Qij to indicate the blocks of Q(K) as defined in (29).
Substitution of (29) in (33), and a few algebraic simplifications lead
to (32). �

REFERENCES

[1] V. Anantharam and C. Desoer, “On the stabilization of nonlinear systems,”
IEEE Trans. Autom. Control, vol. 29, pp. 569–572, 1984.

[2] V. Anantharam, “On stabilization and the existence of coprime factoriza-
tion,” IEEE Trans. Autom. Control, vol. 30, pp. 1030–1031, 1985.

[3] S. Shankar and V. R. Sule, “Algebraic geometric aspects of feedback
stabilization,” SIAM J. Control Optim., vol. 30, no. 1, pp. 11–30, 1992.

[4] V. R. Sule, “Feedback stabilization over commutative rings: The matrix
case,” SIAM J. Control Optim., vol. 32, pp. 1675–1695, 1994.

[5] V. R. Sule, “Corrigendum: Feedback stabilization over commutative rings:
The matrix case,” SIAM J. Control Optim., vol. 36, pp. 2194–2195, 1998.

[6] K. Mori and K. Abe, “Feedback stabilization over commutative rings: Fur-
ther study of coordinate-free approach,” SIAM J. Control Optim., vol. 39,
no. 6, pp. 1952–1973, 2001.

[7] K. Mori, “Parameterization of stabilizing controllers over commutative
rings with applications to multidimensional systems,” IEEE Trans. Cir-
cuits Syst. I, vol. 49, pp. 743–752, 2002.

[8] K. Mori, “Elementary proof of controller parametrization without coprime
factorizability,” IEEE Trans. Autom. Control, vol. 49, no. 4, pp. 589–592,
2004.

[9] K. Mori, “Relationship between standard control problem and model-
matching problem without coprime factorizability,” IEEE Trans. Autom.
Control, vol. 49, no. 2, pp. 230–233, 2004.

[10] M. Rotkowitz and S. Lall, “A characterization of convex problems in de-
centralized control,” IEEE Trans. Autom. Control, vol. 51, no. 2, pp. 274–
286, 2006.
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