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Abstract

The problem of finding an optimal decentralized con-
troller is considered, where both the plant and the con-
trollers under consideration are rational. It has been
shown that a condition called quadratic invariance,
which relates the plant and the constraints imposed
on the desired controller, allows the optimal decentral-
ized control problem to be cast as a convex optimiza-
tion problem, provided that a controller is given which
is both stable and stabilizing. This paper shows how,
even when such a controller is not provided, the opti-
mal decentralized control problem may still be cast as
a convex optimization problem, albeit a more compli-
cated one. The solution of the resulting convex problem
is then discussed.

The result that quadratic invariance gives convexity
is thus extended to all finite-dimensional linear prob-
lems. In particular, this result may now be used for
plants which are not strongly stabilizable, or for which
a stabilizing controller is simply difficult to find. The
results hold in continuous-time or discrete-time.

1 Introduction

The problem of finding an optimal decentralized con-
troller is considered, where both the plant and the con-
trollers under consideration are rational. It has been
shown that a condition called quadratic invariance [4],
which relates the plant and the constraints imposed on
the desired controller, allows the optimal decentralized
control problem to be cast as a convex optimization
problem.

When the plant is unstable, these results rely upon
the existence of a nominal controller which is both sta-
ble and stabilizing. However, finding such a controller

1Automatic Control, Royal Institute of Technology (KTH),
SE-100 44 Stockholm, Sweden
Email: michael.rotkowitz@ee.kth.se

2Department of Aeronautics and Astronautics,
Stanford University, Stanford CA 94305-4035, U.S.A.
Email: lall@stanford.edu

may be a difficult task, or in some cases, one may not
exist at all. This paper shows how, even when such
a controller is not provided, the optimal decentralized
control problem may still be cast as a convex optimiza-
tion problem, albeit a more complicated one. The solu-
tion of the resulting convex problem is then discussed.

The result that quadratic invariance gives convexity
is thus extended to all finite-dimensional linear prob-
lems. We further see that the techniques in this pa-
per result in a standard unconstrained control prob-
lem whose solution yields stabilizing decentralized con-
trollers for this large class of problems.

2 Preliminaries

We consider a generalized plant P ∈ R
(nz+ny)×(nw+nu)
p ,

partitioned as in Figure 1. Note that we refer to the
2-2 block simply as G.

For all K ∈ Rp, we define the closed-loop map

f(P,K) ∈ Rnz×nw

p as

f(P,K) = P11 + P12K(I − GK)−1P21

and this is also called the (lower) linear fractional

transformation (LFT) of P and K.

P11 P12

P21 G

K

w

uy

z

v1 v2

Figure 1: Linear fractional interconnection of P and K

2.1 Stabilization

We say that K stabilizes P if in Figure 1 the nine
transfer matrices from (w, v1, v2) to (z, u, y) belong to
RH∞. We say that K stabilizes G if in the figure
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November 23, 2006 editedthe four transfer matrices from (v1, v2) to (u, y) be-
long to RH∞. P is called stabilizable if there ex-
ists K ∈ R

nu×ny

p such that K stabilizes P , and it
is called strongly stabilizable if there exists K ∈
RH

nu×ny

∞ such that K stabilizes P . We denote by
Cstab ⊆ R

nu×ny

p the set of controllers K ∈ R
nu×ny

p

which stabilize P . The following standard result re-
lates stabilization of P with stabilization of G.

Theorem 1. Suppose G ∈ R
ny×nu

sp and P ∈

R
(nz+ny)×(nw+nu)
p , and suppose P is stabilizable. Then

K stabilizes P if and only if K stabilizes G.

Proof. See, for example, Chapter 4 of [1].

2.2 Kronecker products

Given A ∈ C
m×n and B ∈ C

s×q let the Kronecker

product of A and B be denoted by A⊗B and given by

A ⊗ B =







A11B · · · A1nB
...

...
Am1B · · · AmnB






∈ C

ms×nq

Given A ∈ C
m×n, we may write A in term of its

columns as
A =

[

a1 . . . an

]

and then associate a vector vec(A) ∈ C
mn defined by

vec(A) =







a1

...
an







Lemma 2. Let A ∈ C
m×n, B ∈ C

s×q, X ∈ C
n×s.

Then

vec(AXB) = (BT ⊗ A)vec(X)

Proof. See, for example, [2].

2.3 Problem Formulation

The optimization problem we address is as follows.

Given P ∈ R
(nz+ny)×(nw+nu)
p , and a subspace of admis-

sible controllers S ⊆ R
nu×ny

p , we would like to solve:

minimize ‖f(P,K)‖

subject to K stabilizes P

K ∈ S

(1)

Here ‖·‖ is any norm on Rnz×nw

p , chosen to encap-
sulate the control performance objectives, and S is a

subspace of admissible controllers which encapsulates
the decentralized nature of the system. All of the re-
sults regarding convexification in this paper apply for
arbitrary norm, but we will limit ourselves to the H2-
norm when we discuss further reduction of the problem
to unconstrained problems.

Most decentralized control problems may be formu-
lated in this manner, with the subspace S typically be-
ing defined by sparsity constraints or delay constraints.
We often refer to S as the information constraint .

The cost function ‖f(P,K)‖ is in general a non-
convex function of K, and no computationally tractable
approach is known for solving this problem for arbi-
trary P and S.

2.4 Feedback Map

We define the map h : Rsp ×Rp → Rp by

h(G,K) = −K(I − GK)−1

We will also make use of the notation hG(K) =
h(G,K). Given G ∈ Rsp, we note that hG is an in-
volution on Rp, as a straightforward calculation shows
that hG(hG(K)) = K.

2.5 Quadratic Invariance

In this subsection we define quadratic invariance, and
give a brief overview of results regarding this condition,
in particular, that it renders the information constraint
invariant under a feedback map, and that it allows for
convex synthesis of optimal decentralized controllers
when a stable and stabilizing controller is provided.

Definition 3. The set S is called quadratically in-

variant under G if

KGK ∈ S for all K ∈ S

The following is a special case of the main theorem
of [4] and was first proved with this level of generality
in [3]. It states that quadratic invariance of the con-
straint set is necessary and sufficient for the set to be
invariant under the LFT defined by hG.

Theorem 4. Suppose G ∈ R
ny×nu

sp and S ⊆ R
nu×ny

p

is a closed subspace. Then

S is quadratically invariant under G

⇐⇒ hG(S) = S

Proof. See [3, 4].
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November 23, 2006 editedFrom this, and from a specific Youla parameter-
ization, it ultimately follows that if S is a closed
subspace, S is quadratically invariant under G, and
Knom ∈ RH∞ ∩ S is a stabilizing controller, then
K is optimal for problem (1) if and only if K =
Knom−h

(

h(Knom, G), Q
)

and Q is optimal for following
optimization problem

minimize ‖T1 − T2QT3‖

subject to Q ∈ RH∞

Q ∈ S

(2)

where T1, T2, T3 ∈ RH∞.

This is a convex optimization problem. We may solve
it to find the optimal Q, and then recover the optimal
K for our original problem.

If the norm of interest is the H2-norm, it was shown
in [4] that vectorization can be used to further reduce
the problem to an unconstrained optimal control prob-
lem which may then be solved with standard software,
as follows.

Theorem 5. Suppose x is an optimal solution to

minimize ‖b + Ax‖2

subject to x ∈ RH∞

(3)

where D ∈ R
nuny×a is a matrix whose columns form

an orthonormal basis for vec(S), and

b = vec(T1), A = −(TT

3 ⊗ T2)D.

Then Q = vec−1(Dx) is optimal for (2) and the optimal

values are equivalent.

Proof. See [4].

3 Convexity without a Stabilizing Con-

troller

Suppose that one cannot find a Knom ∈ Cstab∩RH∞∩
S; that is, a controller with the admissible structure
which is both stable and stabilizing. This may occur
either because the plant is not strongly stabilizable, or
simply because it is difficult to find. In this section we
will show that problem (1) can still be reduced to a
convex optimization problem, albeit one which is less
straightforward to solve.

We will achieve this by bypassing the Youla param-
eterization, and using the change of variables typically
associated with stable or bounded plants

R = hG(K) = − K(I − GK)−1

where R will be used instead of Q to elucidate that
this is not a Youla parameter. The key observation
is that internal stabilization is equivalent to an affine
constraint in this parameter.

The constraint that K stabilize G, which is equiv-
alent to the constraint that K stabilize P when the
standard conditions of Theorem 1 hold, is defined as
requiring that the maps from (v1, v2) to (u, y) in Fig-
ure 1 belong to RH∞. This can be stated explicitly
as

[

(I − KG)−1 (I − KG)−1K

G(I − KG)−1 G(I − KG)−1K

]

∈ RH∞

Making use of the relations

(I − GK)−1G = G(I − KG)−1

(I − KG)−1 = I + K(I − GK)−1G

we find that K stabilizes G if and only if

[

RG R

G − GRG GR

]

∈ RH∞ (4)

Suppose G ∈ R
ny×nu

sp and S ⊆ R
nu×ny

p is a quadrat-
ically invariant closed subspace. We may then use this
result to transform the stabilization constraint of prob-
lem (1) and use Theorem 4 to transform the information
constraint to obtain the following equivalent problem.
K is optimal for problem (1) if and only if K = hG(R)
and R is optimal for

minimize ‖P11 − P12RP21‖

subject to

[

RG R

G − GRG GR

]

∈ RH∞

R ∈ S

(5)

This is a convex optimization problem.

4 Solution without a Stabilizing Con-

troller

We show in this section that vectorization can simi-
larly be used to eliminate the information constraint
when a nominal stable and stabilizing controller can
not be found. The resulting problem is not immedi-
ately amenable to standard software, as is problem 3,
but methods for obtaining its solution are discussed.

Let D ∈ R
nuny×a be a matrix whose columns form

an orthonormal basis for vec(S), and now let

f = vec(P11), E = −(PT
21 ⊗ P12)D,
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d =





0
vec(G)

0



 , C =





(GT ⊗ I)D
−(GT ⊗ G)D

(I ⊗ G)D





We then may solve the following equivalent problem.
Suppose x is an optimal solution to

minimize ‖f + Ex‖2

subject to d + Cx ∈ RH∞

x ∈ RH∞

(6)

Then R = vec−1(Dx) is optimal for (5) and the opti-
mal values are equivalent. The optimal K for problem
(1) could then be recovered as K = hG(R).

Remark 6. While A, b of problem (3) are stable,

C, d,E, f of problem (6) may very well be unstable. No-

tice also that G ∈ Rsp implies C, d ∈ Rsp.

Remark 7. The last constraint comes from the upper

right-hand block of Condition (4), and the others come

from the rest of that condition.

Remark 8. The relaxed problem

minimize ‖f + Ex‖2

subject to x ∈ RH∞

(7)

can be solved with standard software in the same man-

ner as problem (3), and gives a lower bound on the

solution. If the result is such that the entire constraint

of problem (6) is satisfied, then the optimal value has

been achieved.

Remark 9. For any µ > 0 the following problem may

be solved in the same standard manner

minimize

∥

∥

∥

∥

[

f

µd

]

+

[

E

µC

]

x

∥

∥

∥

∥

2

subject to x ∈ RH∞

(8)

and then the optimal value of x as well as the optimal

value of the objective function will approach those of

problem (6) as µ approaches 0 from above.

A reasonable solution procedure for problem (6)
would then be to first solve the relaxed problem of
Remark 8, and test whether d + Cx ∈ RH∞ for the
optimal value. If so, we are done and can recover the
optimal K. If not, then solve problem (8) for values of
µ which decrease and approach 0. This procedure in no
way requires a controller that is both stable and stabi-
lizing, so it is most useful when the plant is actually

not strongly stabilizable, and thus no such controller
exists.

Alternatively, as long as P is stabilizable by some
K ∈ S, the solution to problem (8) for any µ > 0
results in an x such that ‖d + Cx‖2 is finite. Thus
R = vec−1(Dx) satisfies Condition (4), and K = hG(R)
is both stabilizing and lies in S. If it is also stable, we
have then found a Knom ∈ Cstab ∩ RH∞ ∩ S, and the
procedures from [4] may be used to find the optimal de-
centralized controller. This is ideal for the case where
the plant is strongly stabilizable, but a stabilizing con-
troller is difficult to find with other methods.

The techniques discussed here involve not only find-
ing optimal decentralized controllers, but also develop
explicit procedures for first finding a stabilizing decen-
tralized controller when one is not available otherwise.
As there are no known systematic methods of finding
stabilizing controllers for most quadratically invariant
problems, this is an extremely important development,
and an exciting avenue for future research.

5 Conclusions

We showed that an optimal decentralized control prob-
lem can be reduced to a convex optimization problem
if the information constraint is quadratically invariant,
even if a stabilizing controller is not provided. The key
was using a change of variables in which stabilization is
an affine constraint, and in which the parameter takes
on the same constraints as the controller. We discussed
further reduction of this problem to centralized control
problems so that standard techniques could be used
for computation. In our final remark, we showed how
regularization can then be used to formulate a central-
ized problem which yields a stabilizing controller for
the original problem.
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