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Abstract

We consider the problem of stabilizing a network con-
sisting of linear time-invariant plants, sensors, con-
trollers, and relays, where the links can be rate-
limited. A recent result shows how to characterize
such networks for which stabilizing controllers exist,
and then shows how to synthesize the coding and con-
trol laws to stabilize the network. This paper shows
how that characterization can be expressed as an LP,
and how that LP can then be extended to find cod-
ing/control laws which are optimal in a sense. It is
further shown how to find such laws using a sparse
portion of the network when possible.

1 Introduction

We consider a network of linear time-invariant plants,
sensors, controllers, and relays. Each sensor gets mea-
surements from a particular plant, and can then pass
that on either to a relay, or directly to a controller,
which would then give an input for a particular plant.
Any of these links may be rate-limited. The frame-
work for this paper mostly follows the development
in [4], and that paper should be consulted for more
detail on any of the setup, definitions, or assumptions
which may be described in less detail here.

In that work, conditions were developed which
characterized when such a network can be stabilized
in terms of the available data rates, the eigenvalues
of the plant modes, and the network topology. This
was achieved using pseudorates, which corresponded
to the amount of each channel being used to stabilize
a particular mode, and then using these pseudorates
to synthesize coding and control laws which stabilize
the network. The pseudorates associated with every
possible nontrivial irreducible cycle emanating from
an unstable plant mode needed to satisfy certain in-
equalities.

In this paper, we show how, by generalizing some
definitions, the conditions for stabilizability can be
written as a Linear Program (LP), without any need
to work out the nontrivial irreducible cycles con-
nected to each mode. This is important because
an LP can be solved with standard software, and can
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either find the global optimum or determine the prob-
lem to be infeasible efficiently in polynomial time.

Given this LP for stabilizability, we then consider
how to choose from among the feasible psuedorates.
We introduce two ways to optimize or enforce mar-
gins of error while maintaining an LP. We further
show how to systematically choose sparse solutions,
corresponding to using as few links as possible, from
the remaining feasible solutions, again maintaining
an LP.

2 Preliminaries

We consider the problem of stabilizing discrete-time
linear time-invariant modes over a network of di-
rected, point-to-point, errorless, finite bit-rate digital
channels. The setup and notation closely follows that
in [4]. A few aspects have been slightly generalized
to lend itself to a more seamless transition to an LP
in subsequent sections.

We now consider a network of N nodes. Each node
can correspond to a plant mode, a controller, a sensor,
or a relay. As in [4], we assume that each plant has
real, distinct eigenvalues (though this can be relaxed),
and thus that each plant node h can represent a 1-
dimensional plant with dynamics matrix ηh ∈ R.

With each node; that is, ∀ h ∈ 1, . . . , N , we as-
sociate a value Hh which can be interpreted as the
entropy generated at that node.

Hh =

{

max{log2|ηh|, 0}, if node i is a plant mode

0, otherwise.

In other words, for an unstable plant mode this rep-
resents the log of the eigenvalue, or magnitude, and
it is zero otherwise. If we were to generalize to mul-
tidimensional plants, this would become the sum of
the logs of the unstable eigenvalues.

With each pair of nodes; that is, ∀ q, r ∈ 1, . . . , N ,
we associate a data rate Rq,r as

Rq,r =







































average channel data rate,

if q is a relay communicating to r

if q is a sensor communicating to r

∞, if q is a controller affecting r

if r is sensing from q

0, otherwise.

In other words, a generalized average data rate be-
tween nodes.
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3 Stabilizability

Let Ch denote the set of all irreducible cycles which
include a (plant) node h. For a given node h and
cycle c ∈ Ch, introduce a pseudorate ρ̃h,c ≥ 0.

Consider the following inequalities from [4]:

Rq,r ≥
∑

c∈Ch

ρ̃h,c ∀ q, r (1)

∑

c∈Ch

ρ̃h,c ≥ log2|ηh| (2)

The main result of [4] can be restated as such: fea-
sibility of (1), (2) is necessary for the existence of
controllers which uniformly stabilize the network, and
strict feasibility is sufficient for the existence of such
controllers.

This is sometimes paraphrased by saying that the
inequalities are necessary and almost sufficient for
stabilizability.

Let us now consider psuedorates ρh,i,j ∈ R associ-
ated with any triple of nodes h, i, j ∈ 1, . . . , N . Fea-
sibility of the above condition is then equivalent to
feasibility of the following linear inequalities

Rq,r ≥
∑

h

ρh,q,r ∀ q, r (3)

∑

q

ρh,q,r ≥
∑

s

ρh,r,s ∀ h, r (4)

∑

q

ρh,q,h ≥ Hh ∀ h (5)

ρh,i,j ≥ 0 ∀ h, i, j (6)

The interpretation is that ρh,q,r represents the
amount of the data rate along the link q → r being
used to stabilize mode h, but with our generalized
definitions of Hh and Rq,r, we may consider them for
any triple. The requirement in [4] that only nontriv-
ial irreducible cycles emanating from unstable modes
be considered is now automatically enforced.

4 Other Objectives

We now consider other qualities we may wish our
pseudorates and corresponding stabilizing controller
to have, and how to enforce them while retaining
an LP.

Data rate buffer. We may wish to enforce a buffer
of extra data rate along each link, in case there is
some uncertainty regarding the available data rates,
or to maximize such a buffer. This could be enforced
by replacing (3) with the constraint

Rq,r −
∑

h

ρh,q,r ≥ γR Rq,r ∀ q, r (7)

for some γR ∈ (0, 1). Making the right-hand side mul-
tiplicative in Rq,r, rather than a constant, allows this

to be applied seamlessly over links with a general-
ized data rate of zero or infinity. Using γR

∑

h ρh,q,r

for some γR ∈ R+ would work as well. Of course,
γR could be made to vary from link to link as γR

q,r if
there are varying degrees of certainty regarding the
available data rates.

Eigenvalue buffer. We may also or alternatively
wish to enforce a buffer corresponding to the data
rates available to stabilize each unstable mode, or to
maximize such a buffer. This could be enforced by
replacing (5) with

∑

q

ρh,q,h − Hh ≥ γH Hh ∀ h (8)

for some γH ∈ R
+. Similar to above, making the

right-hand side multiplicative in Hh, rather than a
constant, allows this to be applied seamlessly over
nodes with a generalized entropy of zero; that is,
nodes which do not correspond to an unstable plant
mode. Also similar to above, using γH

∑

q ρh,q,h for

some γH ∈ (0, 1) would work as well, and γH could
be made to vary from link to link as γH

h if there are
varying degrees of certainty regarding the eigenvalues
or varying requirements for disturbance attenuation.
Recent results [3] show that, at least for simplified
versions of this problem, the possible disturbance at-
tenuation associated with this buffer can be an inter-
pretable quantity related to a Bode integral.

Sparsity. Lastly, all else equal, we would typically
like the resulting graph of (nonzero) pseudorates to
be as sparse as possible; that is, for as many of the
pseudorates to be zero as possible while stabilizing
the network and satisfying the buffers. There are of-
ten inexplicit costs associated with using a link, such
that, if a link is playing a very small role in stabiliz-
ing a node, and that node can be stabilized in another
manner, we would typically prefer to not have to use
that link at all.

Of course, directly minimizing the number of
nonzero pseudorates would ruin our LP and lead to
an intractable problem for all but the smallest net-
works. However, minimizing the 1-norm of a vec-
tor often yields sparse solutions and gives very good
approximations for minimizing the cardinality. The
reasons for this have become much better understood
recently [2, 1].

We thus introduce the following objective for our
optimization problem

min ‖vec(ρ)‖1 (9)

where vec(ρ) gives a vector in R
N3

×1 containing all
of the entries of ρh,q,r for all h, q, r ∈ 1, . . . , N .

5 Final LP

Choose αS , αR, αH ∈ R+ to represent the relative im-
portance on sparsity, the rate buffer, and the eigen-
value buffer, respectively. They can be chosen w.l.o.g.
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to sum to 1. We can now express our optimization
problem as follows

min αS‖vec(ρ)‖1 − αRγR − αHγH

subject to Rq,r −
∑

h

ρh,q,r ≥ γR Rq,r ∀ q, r

∑

q

ρh,q,r ≥
∑

s

ρh,r,s ∀ h, r

∑

q

ρh,q,h − Hh ≥ γH Hh ∀ h

ρh,i,j ≥ 0 ∀ h, i, j

γR ≥ 0

γH ≥ 0

Of course, if we instead wanted to impose a hard
constraint for one of the buffers, rather than incor-
porating it into the objective function, we would just
fix the corresponding γ and then remove the corre-
sponding term from the objective. If we didn’t need
a particular buffer at all, we would just fix that γ to
be 0.

We can now put this optimization problem in the
standard LP form

min cT x

subject to Ax ≤ b

to be solved with, for example, the linprog() function
in Matlab.

Let

x =
[

vec(ρ)T γR γH
]T

∈ R
(N3+2)×1

c =
[

αS · · · αS −αR −αH
]T

∈ R
(N3+2)×1

Note that since the pseudorates are nonnegative, the
usual trick for optimizing a 1-norm as an LP is not
necessary. The form of A, B will depend on the ex-
act choice of vec : R

N×N×N → R
N3

×1 and is left
to the reader. It then remains to replace the values
of ∞ with an appropriately large number such that
the result will be unaffected; anything larger than
(1 + γH)(

∑

h Hh)/(1 − γR), for the largest values of
γH and γR likely to be considered, will suffice. After
solving the standard LP, the optimal pseudorates can
then be recovered as ρ∗ = vec−1(

[

IN3 0
]

x∗), which
can then be used as described in [4] to synthesize the
(optimal) stabilizing coding and control laws.
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6 Conclusions

Given a network of linear time-invariant plants, sen-
sors, controllers, and relays, we have leveraged recent
results to develop an LP to determine stabilizability
of the network. We modified this LP to enforce or
maximize margins of error, and further modified it
to stabilize the network using a sparse potion of the
available links when possible.

Interesting future work could include developing an
understanding of the relationship between the buffers
γR, γH and more traditional notions of stability mar-
gin.
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