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Abstract: We consider the problem of stabilizing a network consisting of linear time-invariant
plants, sensors, controllers, and relays, where the links can be rate-limited. A previous result
shows how to characterize such networks for which stabilizing controllers exist, and then shows
how to synthesize coding and control laws to stabilize the network. A key component is finding
pseudorates, which determine how much of a given network link is used to help stabilize a given
unstable mode on the network. In this paper, we seek to determine these pseudorates using
only local information, and show that this can be achieved using dual decomposition for most
objectives of interest. For a 1-norm objective that often allows a sparse portion of the network
to be used for stabilization, we instead develop a method using techniques similar to ADMM
and show that all but one step of the algorithm can be decomposed.
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1. INTRODUCTION

We consider a network of linear time-invariant plants,
sensors, controllers, and relays. Each sensor gets measure-
ments from a particular plant, and can then pass that on
either to a relay, or directly to a controller, which would
then give an input for a particular plant. Any of these links
may be rate-limited. The framework for this paper mostly
follows the development in (Nair and Evans (2007)), and
that paper should be consulted for more detail on any
of the setup, definitions, or assumptions which may be
described in less detail here.

In that work, conditions were developed which charac-
terized when such a network can be stabilized in terms
of the available data rates, the eigenvalues of the plant
modes, and the network topology. This was achieved using
pseudorates, which corresponded to the amount of each
channel being used to stabilize a particular mode, and
then using these pseudorates to synthesize coding and
control laws which stabilize the network. The pseudorates
associated with every possible nontrivial irreducible cycle
emanating from an unstable plant mode needed to satisfy
certain inequalities.

In (Rotkowitz and Nair (2008)), it was shown how, by
generalizing some definitions, the conditions for stabiliz-
ability could be written as a Linear Program (LP), without
any need to work out the nontrivial irreducible cycles
connected to each mode. This is important because an
LP can be solved with standard software, and can either
find the global optimum or determine the problem to be
infeasible efficiently in polynomial time.

In this paper, we seek to decompose the computation of
these optimal pseudorates, to address whether, or to what
extent, we can compute them based only on information
that is local to the respective link of the network. This
could prove useful for very large networks, or possibly for
time-varying networks.

The paper is organized as follows. In Section 2, we develop
the framework and some preliminaries. In Section 3, we
review some of the results on the sufficient conditions on
the network for stabilization to be achievable, and state a
general form of the optimization problem that we address
here. In Section 4, we show how the optimization problem
can indeed be decomposed using dual decomposition for
most cost functions; namely, for p-norms of the pseudorate
vector where p > 1. We work through a numerical example
of this in Section 5 using the 2-norm. We then develop a
method to address the 1-norm in Section 6, and show that
we can decompose all but one step of the algorithm, and
work through a numerical example of this in Section 7.

2. PRELIMINARIES

2.1 Problem Setup

We consider the problem of stabilizing discrete-time, linear
time-invariant plants over a network of directed, point-to-
point, error-less, finite bit-rate digital channels.

• The network topology can be represented via a di-
rected graph G = (V,E), where V is the set of nodes
and E is the set of links. A link is an ordered pair
(q, r) of nodes, meaning that this link leaves node q
and enters node r ( link (q, r) : q −→ r ).
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• N = |V | is the number of nodes and L = |E| is the
number of links in G.
• Vp ⊆ V is the subset of plant nodes. P = |Vp| is the

number of plant nodes.
• Label the nodes with consecutive integers from 1 to
N , and then let V = {1, . . . , N}. Without loss of
generality, we label the plant nodes from 1 to P ,
and the other nodes from P + 1 to N , so we have
Vp = {1, . . . , P}.
• Label the links with consecutive integers from 1 to L,

and then let E = {1, . . . , L}.
• As in (Nair and Evans (2007)), assume that each

plant has distinct eigenvalue, thus each plant node
h represents a 1-dimensional plant with dynamics
matrix ηh ∈ R, h = 1, . . . , P .

2.2 Some Definitions

• In (Nair and Evans (2007)), for any plant node h,
an irreducible xh-cycle c is defined as any finite
sequence of nodes such that
(1) The first and last element is h, but every other

element in the sequence occurs only once.
(2) Any other plant node h

′
, h

′ 6= h, in the sequence
must be followed by a sensor node which can
observe it, and preceded by a controller node
which can affect it.

• For each node h ∈ V , associate a value Hh which can
be interpreted as the entropy generated at that node
(Rotkowitz and Nair (2008)).

Hh =

{
max{log |ηh|, 0}, if h ∈ Vp
0, otherwise.

• For each pair of nodes q, r ∈ V , associate a data rate
Rq,r(Rotkowitz and Nair (2008)).

Rq,r =



average channel data rate,

if q is a relay communicating to r

if q is a sensor communicating to r

∞, if q is a controller affecting r

if r is sensing from q

0, otherwise.

3. STABILIZABILITY

In this section, we review and develop conditions that
allow one to construct stabilizing encoders, decoders, and
control laws. In Section 3.1, we further develop some nota-
tions allowing us to restate these stabilizablity conditions
in a compact form that will be useful throughout, and
then, in Section 3.2, we formulate our optimization prob-
lem that we will address in the remainder of the paper.

Let Ch be the set of all irreducible xh-cycles, and for any
xh-cycle c ∈ Ch, let ρh,c ≥ 0 be the pseudorate along
this cycle being used to stabilize mode h. Consider the
following inequalities from (Nair and Evans (2007)),

Rq,r ≥
∑
h

∑
c∈Ch:(q,r)∈c

ρh,c ∀ (q, r) ∈ E (1)

∑
c∈Ch

ρh,c ≥ max{log |ηh|, 0} ∀ h ∈ Vp (2)

Assume that each node performs only routing but no net-
work coding, then this condition is necessary and almost
sufficient for stabilizability.

In (Rotkowitz and Nair (2008)), a set of equivalent in-
equalities is developed. There they defined pseudorates
ρh,q,r ≥ 0, associated with a triple of nodes h, q, r ∈ V ,
to be the amount of data rate along link (q, r) being used
to stabilize mode h. And with the generalized definitions
of Hh and Rq,r as in 2.2, it can be considered for any
triple. Feasibility of (1) and (2) is then equivalent to the
feasibility of the following linear inequalities,

Rq,r ≥
∑
h

ρh,q,r ∀ q, r ∈ V (3)∑
q

ρh,q,r ≥
∑
s

ρh,r,s ∀ h, r ∈ V (4)∑
q

ρh,q,h ≥ Hh ∀ h ∈ V (5)

ρh,i,j ≥ 0 ∀ h, i, j ∈ V (6)

3.1 Equivalent Compact Form

We have the following observations:

• In (3), if (q, r) /∈ E, then Rq,r = 0, together with (6),
we immediately have ρh,q,r = 0 for all h ∈ V . So we
need only to solve for those ρh,q,r such that (q, r) ∈ E.

• In (5), if h /∈ Vp, then Hh = 0. Thus for any
(q, h) ∈ E, as long as ρh,q,h ≥ 0, i.e. (6) is satisfied,
(5) is automatically satisfied. Because of (3), the data
rate constraint on each link (q, r) ∈ E, and (5), the
stabilizability constraint for each plant node h ∈ Vp,
it would be desired to set ρh,q,r = 0 for any h /∈ Vp,
(q, r) ∈ E, so as to leave room for those ρh,q,r such
that h ∈ Vp, (q, r) ∈ E.

• Since the pseudorates travel in cycles, in order for (4)
to hold for all nodes in any cycle, equality has to be
enforced.

Based on the observations above, to solve the feasibility
problem of (3)-(6), it suffices to solve the feasibility prob-
lem of the following set of linear equality and inequalities,

Rq,r ≥
∑
h∈Vp

ρh,q,r ∀ (q, r) ∈ E (7)

∑
q:(q,r)∈E

ρh,q,r =
∑

s:(r,s)∈E

ρh,r,s ∀ h ∈ Vp, ∀ r ∈ V (8)

∑
q:(q,h)∈E

ρh,q,h ≥ Hh ∀ h ∈ Vp (9)

ρh,q,r ≥ 0 ∀ h ∈ Vp, ∀ (q, r) ∈ E
(10)

With the labeling of nodes and links as in 2.1, we now let
Rl be the data rate of link l, and ρh,l be the pseudorate
along link l being used to stabilize mode h. Equations (7)-
(10) can then be rewritten as:
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Rl ≥
P∑
h=1

ρh,l ∀ l = 1, . . . , L (11)∑
l enters r

ρh,l =
∑

l′ leaves r

ρh,l′ ∀ h = 1, . . . , P, r = 1, . . . , N

(12)∑
l enters h

ρh,l ≥ Hh ∀ h = 1, . . . , P (13)

ρh,l ≥ 0 ∀ h = 1, . . . , P, l = 1, . . . , L
(14)

Next, we will further rewrite (11)-(14) in a more compact
form.

For all h = 1, . . . , P , let ρh = [ρh,1, . . . , ρh,L]T ∈ RL,
further let ρ = [ρT1 , . . . , ρ

T
P ]T ∈ RPL.

• The network topology can be represented by a node-
link incidence matrix Ã ∈ RN×L

Ã (n, l) =


−1, link l leaves node n

1, link l enters node n

0, otherwise

(15)

n = 1, . . . , N, l = 1, . . . , L

Then (12) can be written as

Ãρh = 0, h = 1, . . . , P (16)

Furthermore, let A = diag(Ã, . . . , Ã) ∈ RPN×PL,
then (12) can be compactly written as

Aρ = 0 (17)

• Let bÃc+ be the projection of Ã to RN×L+ , i.e

bÃc+(n, l) = max{Ã (n, l) , 0}, n = 1, . . . , N, l =

1, . . . , L. And then let b̃T1 , . . . , b̃
T
P be the first P rows

of bÃc+(recall that we label the plant nodes from 1 to

P ), then b̃Th ρh, h = 1, . . . , P , is precisely the sum of
pseudorates being used to stabilize mode h that enter
the plant node h. Now let B = diag(b̃T1 , . . . , b̃

T
P ) ∈

RP×PL, H = [H1, . . . ,HP ]T , then (13) can be com-
pactly written as

Bρ � H (18)

• Let I ∈ RL×L be the identity matrix, and C =
[I, . . . , I] ∈ RL×PL. Let cT1 , . . . , c

T
L be the rows of C,

then for all l = 1, . . . , L, cTl ρ is the total amount
of pseudorates passing through link l. Let R =
[R1, . . . , RL]T ∈ RL, then (11) can be compactly
written as

Cρ � R (19)

Finally, (11)-(14) can be compactly written as

Aρ = 0

Bρ � H (20)

Cρ � R
ρ � 0

3.2 Optimization problem formulation

Let φ(ρ) =

P∑
h=1

L∑
l=1

φh,l(ρh,l) be a separable convex rate

cost function, meant to capture in what manner we wish

to keep our psuedorates small while satisfying the stabi-
lization conditions. We can now state our stabilization
over network optimzation problem as:

minimize: φ(ρ)

subject to: Aρ = 0 (21)

Bρ � H (22)

Cρ � R (23)

with variable ρ ∈ RPL+ . This is a finite-dimensional convex
optimization problem. We wish to see whether we can
decompose the problem and solve it using only local
information.

4. DUAL DECOMPOSITION METHOD

In this section, we first attempt to use dual decomposition.

4.1 Dual Problem

For (21), (22), (23), introduce dual variables ν ∈ RPN ,
λ ∈ RP+, γ ∈ RL+, respectively. Furthermore, let ν =

[ν1
T , . . . , νP

T ]T , where νh = [νh,1, . . . , νh,N ]T ∈ RN , h =
1, . . . , P . This results in the following Lagrangian,

L (ρ, ν, λ, γ)

= φ(ρ) + νT (−Aρ) + λT (H −Bρ) + γT (Cρ−R)

= λTH − γTR+

P∑
h=1

L∑
l=1

[φh,l(ρh,l)− (aT(h−1)L+lν)ρh,l

− (bT(h−1)L+lλ)ρh,l + (cT(h−1)L+lγ)ρh,l]

= λTH − γTR+

P∑
h=1

L∑
l=1

[φh,l(ρh,l)− (ãTl νh)ρh,l

− (bh,lλh)ρh,l + γlρh,l] (24)

and the Lagrangian dual function,

g(ν, λ, γ) = inf
ρ�0

L (ρ, ν, λ, γ)

= λTH − γTR+

P∑
h=1

L∑
l=1

inf
ρh,l≥0

[φh,l(ρh,l)

− (ãTl νh)ρh,l − (bh,lλh)ρh,l + γlρh,l] (25)

Here a(h−1)L+l, b(h−1)L+l, c(h−1)L+l are the [(h − 1)L +
l]th column of matrices A,B,C respectively. ãl is the

lth column of matrix Ã. First, from the construction of
matrix A, we have aT(h−1)L+lν = ãTl νh. Second, since

B = diag(b̃T1 , . . . , b̃
T
P ) ∈ RP×PL, further let b̃Th =

(bh,1, . . . , bh,L), we then have bT(h−1)L+lλ = bh,lλh. Last,

since C = [I, . . . , I] ∈ RL×PL, we have cT(h−1)L+lγ = γl.

4.2 Interpretation for Dual Variables

We now give some interpretations of the dual variables.

• Interpret νh,n as the potential at node n associated
with mode h. Denote ãTl νh as ∆νh,l, which can
then be seen as the potential difference across link
l associated with mode h.
• Denote bh,lλh as ∆λh,l, which can be interpreted as

the supply to plant node h via link l.
• Interpret γl as the price of using link l.
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4.3 Solving the Dual Problem via Subgradient Method

Suppose we can uniquely determine

ρ∗ = arg inf
ρ�0

P∑
h=1

L∑
l=1

[φh,l(ρh,l)− (ãTl νh)ρh,l

− (bh,lλh)ρh,l + γlρh,l], (26)

then the subgradient of negative dual is

Aρ∗ ∈ ∂(−g)(ν) (27)

Bρ∗ −H ∈ ∂(−g)(λ) (28)

R− Cρ∗ ∈ ∂(−g)(γ) (29)

Using the subgradient method, we can have the following
algorithm.

Algorithm 1

• given initial potential vector ν0, plant supply vector
λ0 � 0, and link price vector γ0 � 0
• repeat

(1) Determine

ρk+1
h,l = arg inf

ρh,l≥0
[φh,l(ρh,l)− (ãTl ν

k
h)ρh,l

− (bh,lλ
k
h)ρh,l + γkl ρh,l]

= arg inf
ρh,l≥0

[φh,l(ρh,l)−∆νkh,lρh,l

−∆λkh,lρh,l + γkl ρh,l]

(2) Compute rate surplus

Skh,n = aT(h−1)N+nρ
k+1 = ãTnρ

k+1
h

Here aT(h−1)N+n is the [(h − 1)N + n] th row of

matix A, and ãTn is the n th row of Ã.
(3) Update node potentials

νk+1
h,n = νkh,n − αkSkh,n

(4) Compute demand for each plant node

Dk
h = (Hh − b̃Th ρk+1

h )

(5) Update plant supply

λk+1
h = bλkh + αkD

k
hc+

(6) Compute link capacity margins

Mk
l = Rl −

P∑
h=1

ρk+1
h,l

(7) Update link price

γk+1
l = bγkl − αkMk

l c+
(8) Update dual objective

dk+1 = g(νk+1, λk+1, γk+1)

Where αk is an appropriate positive scalar step-size.

This algorithm is decentralized, since

• Rate ρh,l is calculated from ∆νh,l = ãTl νh, the
potential difference across link l associated with mode
h, ∆λh,l = bh,lλh, the supply to plant node h via link
l, and γl, the price of using link l.
• Node potential νh,n is updated from its own rate

surplus.
• Supply λh is updated from its own demand.
• Link price γl is updated from its own capacity margin.

Node potential νkh,n, supply λkh, and link price γkl converge

to optimal, so does pseudorate ρkh,l. Iterates can be (and

often are) infeasible, i.e. Aρk 6= 0, Bρk � H, Cρk � R,
but we do have Aρ∞ = 0, Bρ∞ � H, Cρ∞ � R, in the
limit. g(ν, λ, γ) gives a lower bound on primal optimal.

5. NUMERICAL EXAMPLE OF SUBGRADIENT
METHOD

We now demonstrate the algorithm developed in the
previous section on a numerical example.

5.1 Parameters of the Networked system

1;x1

3;S16;K3 4;K2 5;S3

2;x2

7;S2 8;K1

3 5

5 810

6

3

Fig. 1. Networked System Example. Nodes are given an
overall enumeration, as well as indicated as being a
dynamical node with state xi, a sensor node Si, or
a controller node Ki. Edges are labelled with their
average channel data rate where it is finite.

• Networked system with N = 8 nodes and L = 15
links (Figure 1).
· Two plant nodes: 1− x1, 2− x2
· Three sensor nodes: 3− S1, 5− S3, 7− S2

· Three controller nodes: 4−K3, 6−K3, 8−K1

• Label the links as:
1 −(1, 3), 2 −(1, 5), 3 −(2, 3), 4 −(2, 7), 5 −(3, 4),
6 −(3, 6), 7 −(4, 1), 8 −(4, 8), 9 −(5, 8), 10−(6, 1),
11− (6, 2), 12− (7, 6), 13− (7, 8), 14− (8, 2), 15− (8, 4)

• R = [∞;∞;∞;∞; 5; 3;∞; 5; 8;∞;∞; 10; 6;∞; 3]
• H = [H1;H2] = [10; 7]

5.2 Objective φ(ρ) = 1/2‖ρ‖22

First we solve the primal problem using the cvx (Grant
and Boyd (2012)) package for Matlab, allowing the com-
putation to be centralized, then we solve the dual problem
using Algorithm 1, our decentralized algorithm, and then
compare the results.

Solving the Primal The solution given by cvx is:
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[ρ∗1 ρ
∗
2] =



5.809 0
4.191 0.412

0 2.191
1.546 4.809
3.353 1.647
2.456 0.544
5.997 0.412

0 1.235
4.191 0.412
4.003 0

0 3.224
1.546 2.68

0 2.129
1.546 3.776
2.645 0


and the optimal primal objective is p∗ = 110.822.

Optimal cycles can be identified as below:

• Mode 1 (Figure 2a)
x1 −→ S1 −→ K3 −→ x1 rate = 2.45
x1 −→ S1 −→ K2 −→ x1 rate = 3.36
x1 −→ S3 −→ K1 −→ K2 −→ x1 rate = 2.64
x1 −→ S3 −→ K1 −→ x2 −→ S2 −→ K3

−→ x1 rate = 1.55
• Mode 2 (Figure 2b)
x2 −→ S1 −→ K2 −→ x1 −→ S3 −→ K1

−→ x2 rate = 0.41
x2 −→ S1 −→ K2 −→ K1 −→ x2 rate = 1.24
x2 −→ S1 −→ K3 −→ x2 rate = 0.54
x2 −→ S2 −→ K3 −→ x2 rate = 2.68
x2 −→ S2 −→ K1 −→ x2 rate = 2.13

1;x1

3;S16;K3 4;K2 5;S3

2;x2

7;S2 8;K1

5.81/∞ 4.19/∞

1.55/∞

2.45/3 3.36/5

6.00/∞

4.19/8

4.00/∞

1.55/10

1.55/∞

2.64/3

(a) Optimal cycles for mode 1

1;x1

3;S16;K3 4;K2 5;S3

2;x2

7;S2 8;K1

0.41/∞

2.19/∞

4.81/∞

1.65/50.54/3

0.41/∞

1.24/5 0.41/8

3.22/∞

2.68/10

2.13/6

3.78/∞

(b) Optimal cycles for mode 2

Fig. 2. Optimal cycles for φ(ρ) = 1/2‖ρ‖22. Edges are
labelled with the pseudorate used for the given mode,
and the total allowable average channel data rate.

Solving the Dual In each iteration, for all h =
1, . . . , P, l = 1, . . . , L, optimal pseudorate can be uniquely
determined by

ρk+1
h,l (∆νkh,l, ∆λkh,l, γ

k
l )

= arg inf
ρh,l≥0

[φh,l(ρh,l)−∆νkh,lρh,l −∆λkh,lρh,l + γkl ρh,l]

= arg inf
ρh,l≥0

[
1

2
ρ2h,l − (∆νkh,l + ∆λkh,l − γkl )ρh,l]

= max{∆νkh,l + ∆λkh,l − γkl , 0} (30)

We set the initial node potential ν0 = 0, plant supply
λ0 = 0, link price γ0 = 0, and we would like to try two
different step-size rules:

(1) Constant step-size rule: αk = 0.2. Since when φ(ρ) =
1/2‖ρ‖22, the Lagrangian dual function g(ν, λ, γ) is
differentiable, so subgradient method with constant
step-size yields convergence to the optimal value,
provided the constant is small enough (Boyd et al.
(2003); Bertsekas and Tsitsiklis (1997)).

(2) Mixed step-size rule: for the first 20 iterations, use
step-size αk = 0.2, for the rest iterations, use dimin-
ishing step-size αk = 4/k.

Figure 3a, 3b, 3c, 3d show the convergence of the dual
objective and feasibility violations of this simulation. The
constant step-size rule (blue, dashed) and the mixed step-
size rule (red, dotted) converge similarly, except with
respect to the capacity violation, where the constant step-
size rule converges much more quickly.

(a) Convergence of
g(νk, λk, γk)

(b) Maximum absolute
violation of Aρ = 0

(c) Minimum violation of
Bρ � H

(d) Maximum capacity
violation

Fig. 3. Simulation results for φ(ρ) = 1/2‖ρ‖22.

For the constant step-size rule, after 200 iterations, we
have dual objective d200 = 110.821, and the primal and
dual iterates are

[λ2001 λ2002 ] = [ 16.99 10.69 ]

[ρ2001 ρ2002 ] =



5.814 0
4.179 0.413

0 2.202
1.543 4.793
3.355 1.649
2.456 0.549
5.994 0.412

0 1.239
4.178 0.414
4.002 0

0 3.222
1.544 2.673

0 2.121
1.542 3.775
2.637 0



γ200 =



0
0
0
0

1.825
4.717

0
0
0
0
0
0
0
0
0
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[ν2001 ν2002 ] =



−7.959 1.133
1.940 −4.955
−2.145 −2.754

3.035 0.721
−3.780 1.545

5.027 2.512
3.483 −0.161
0.398 1.960


The primal iterate ρ200 is very close to the solution given
by cvx. And from the complementary slackness condition,
we know from the dual variable γ200 that link 5 and 6 are
the only two links that have no capacity margin left, and
know from dual variable λ200 that the supply just meet
the demand for each plant, i.e., we have Bρ200 = H.

6. MODIFIED ADMM METHOD FOR φ(ρ) = ‖ρ‖1

When φ(ρ) = ‖ρ‖1, we have

ρ∗h,l(∆νh,l, ∆λh,l, γl)

= arg inf
ρh,l≥0

[φh,l(ρh,l)−∆νh,lρh,l −∆λh,lρh,l + γlρh,l]

= arg inf
ρh,l≥0

(1−∆νh,l −∆λh,l + γl) ρh,l

=


{0}, if 1− ∆νh,l −∆λh,l + γl > 0

[0,∞), if 1− ∆νh,l −∆λh,l + γl = 0

{∞}, if 1− ∆νh,l −∆λh,l + γl < 0

Here ρ∗ cannot be uniquely determined, thus we cannot
use Algorithm 1. We use some ideas from the Alternating
Direction Method of Multipliers (ADMM) algorithm to
handle this case. This involves splitting our objective into
a function of two variables, which are then constrained
to be equal. When formulating the Lagrangian, we then
augment it with a term involving the squared norm of the
mismatch of these variables; this maintains the key saddle-
point property of the Lagrangian, while ensuring that it
has a unique minimizer for any value of the dual variable.
While adding this term would ruin the separability of the
Lagrangian, convergence guarantees still exist if the primal
variables are minimized separately, and this allows us to
preserve most of our decomposition (Boyd et al. (2011)).

Rewrite the problem as below:

minimize: ‖ρ‖1 + f(z)

subject to: ρ− z = 0

Bρ � H (31)

Cρ � R
with variables ρ ∈ RPL+ , z ∈ RPL

where f is the indicator function of {z ∈ RPL | Az = 0}

f(z) =

{
0 if Az = 0

∞ otherwise

Since Ã ∈ RN×L is a node-link incidence matrix of a
directed graph, every column of Ã represents a link and
contains exactly a 1 and a −1. The rank of Ã is precisely
one less than the number of the rows of Ã. Take away

the last row of Ã, and denote the resulting matrix as ¯̃A,

then ¯̃A ∈ R(N−1)×L is of full row rank, and contains all
the information about the topology of the directed graph.
Since we construct A as A = diag(Ã, . . . , Ã) ∈ RPN×PL,

let Ā = diag( ¯̃A, . . . , ¯̃A) ∈ RP (N−1)×PL, then we have
{z ∈ RPL | Az = 0} = {z ∈ RPL | Āz = 0}, and Ā is
of full row rank.

The augmented Lagrangian is

Lβ(ρ, z,η, λ, γ)

= ‖ρ‖1 + f(z) + ηT (ρ− z) + λT (H −Bρ)

+ γT (Cρ−R) +
β

2
‖z − ρ‖22

= ‖ρ‖1 + f(z) + λT (H −Bρ) + γT (Cρ−R)

+
β

2
‖z − ρ− 1

β
η‖22 −

1

2β
ηT η

where η ∈ RPL, λ ∈ RP+, γ ∈ RL+ are the dual variables,
and β is an appropriate positive scalar constant.

We are now ready to state the Modified ADMM Algorithm
for this problem.

Algorithm 2

• given initial dual variables η0, λ0 � 0, γ0 � 0
• repeat

(1) Update z, zk+1 = Π(ρk + 1
β η

k), where Π is the

projection onto {z ∈ RPL | Āz = 0}, which
involves solving a linearly constrained minimum
Euclidean norm problem, can be written explic-
itly as

zk+1 = (I − ĀT (ĀĀT )−1Ā)(ρk +
1

β
ηk)

Denote z = [zT1 . . . z
T
p ]T , where zh =

[zh,1 . . . zh,L]T , h = 1, . . . , P .
(2) Update ρ

ρk+1 = arg inf
ρ�0

Lβ(ρ, zk+1, ηk, λk, γk)

= max{zk+1 − 1

β
(1 + ηk −BTλk + CT γk), 0}

Once we have zk+1, the update of ρ splits into
PL parallel updates of ρh,l.

ρk+1
h,l = max{zk+1

h,l −
1

β
(1 + ηkh,l −∆λkh,l + γkl ), 0}

(3) Update the dual variable η

ηk+1
h,l = ηkh,l − β(zk+1

h,l − ρ
k+1
h,l )

(4) Compute demand for each plant node

Dk
h = (Hh − b̃Th ρk+1

h )

(5) Update plant supply

λk+1
h = bλkh + αkD

k
hc+

(6) Compute link capacity margins

Mk
l = Rl −

P∑
h=1

ρk+1
h,l

.
(7) Update link price

γk+1
l = bγkl − αkMk

l c+
(8) Update objective

pk+1 = φ(ρk+1)

Where αk is an appropriate positive step-size.

NecSys 2013
September 25-26, 2013. Koblenz, Germany

394



In this algorithm, except for the update of z, all of the
other update steps of the primal and dual iterates are
decentralized.

7. NUMERICAL EXAMPLE FOR THE MODIFIED
ADMM

We use the same networked system example as in 5.1.

7.1 Solving the Primal

The solution given by cvx is:

[ρ∗1 ρ
∗
2] =



8.000 0
2.000 0

0 0
0 7.000

5.000 0
3.000 0
7.000 0

0 0
2.000 0
3.000 0

0 3.628
0 3.628
0 3.372
0 3.372

2.000 0


and the optimal primal objective is p∗ = 53.000.

Optimal cycles can be identified as below:

• Mode 1(Figure 4a)
x1 −→ S1 −→ K3 −→ x1 rate = 3
x1 −→ S1 −→ K2 −→ x1 rate = 5
x1 −→ S3 −→ K1 −→ K2 −→ x1 rate = 2
• Mode 2 (Figure 4b)
x2 −→ S2 −→ K3 −→ x2 rate = 3.6
x2 −→ S2 −→ K1 −→ x2 rate = 3.4

1;x1

3;S16;K3 4;K2 5;S3

2;x2

7;S2 8;K1

8/∞ 2/∞

3/3 5/5

7/∞

2/8

3/∞

2/3

(a) Optimal cycles for mode 1

1;x1

3;S16;K3 4;K2 5;S3

2;x2

7;S2 8;K1

3.6/∞

7/∞

3.6/10

3.4/6

3.4/∞

(b) Optimal cycles for mode 2

Fig. 4. Optimal cycles for φ(ρ) = ‖ρ‖1. Edges are labelled
with the pseudorate used for the given mode, and the
total allowable average channel data rate.

7.2 Solving the dual via Modified ADMM

We set the initial primal and dual variables ρ0 = 0, z0 =
0, η0 = 0, λ0 = 0, γ0 = 0 and the parameter β = 0.2. We
compare performance for two different step-size rules:

(1) αk = 1.2/
√
k.

(2) αk = 0.2 for 1 ≤ k ≤ 40, and αk = 8/k for k > 40.

Figure 5a, 5b, 5c, 5d show the convergence of the objective
pk and feasibility violations of this simulation. The con-
vergence for both step-size rules are fast. Since for step-
size rule (2), we use a constant step-size for the first 40
iterations, and then switch to a diminishing step-size, its
curves behave more radical in the early iterations than
those for the step-size rule (1), which uses a diminishing
step-size from the very beginning. Also, we observe that
the convergence for the step-size rule (1) is relatively faster
than that for step-size rule (2).

(a) Convergence of the
objective pk

(b) Maximum absolute
violation of Aρ = 0

(c) Minimum violation of
Bρ � H

(d) Maximum capacity
violation

Fig. 5. Simulation results for φ(ρ) = ‖ρ‖1.

For step-size rule (1), after 150 iterations, we have the
objective p150 = 52.823, and the primal and dual iterates
are

[λ1501 λ1502 ] = [ 4.008 3.001 ]

[ρ1501 ρ1502 ] =



8.043 0
1.936 0

0 0
0 6.983

4.993 0
3.038 0
6.930 0

0 0
1.936 0
3.059 0

0 3.426
0 3.422
0 3.561
0 3.565

1.921 0
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[z1501 z1502 ] =



8.043 0
1.936 0
−0.003 0.002

0.001 6.983
4.994 0
3.047 0.001
6.926 0
−0.001 0

1.936 0
3.054 0
−0.004 3.423

0.003 3.422
−0.003 3.561

0.002 3.562
1.931 0



[η1501 η1502 ] =



−1.000 0.969
−1.000 −0.303

1.100 −0.425
−0.287 −1.000
−2.011 −1.030
−2.006 −1.575

3.008 0.061
1.003 −0.545
−1.000 −0.303

3.008 0.606
0.907 2.000
−0.621 −1.000

0.380 −1.000
−0.094 2.000
−1.000 0.545



γ150 =



0
0
0
0

1.011
1.008

0
0
0
0
0
0
0
0
0


We see that most entries of ρ150 are very close to the
entries of ρ∗ solved by cvx. The differences appear in the
11, 12, 13, 14th entries of ρ2. As we can see from the cycles
for mode 2 in Figure 4b, when the rate cost function is
φ(ρ) = ‖ρ‖1, the solution of the primal variable ρ is not
unique, since we can assign any positive pseduorate on
link 11, 12, 13, 14, as long as ρ2,11 = ρ2,12 ≤ 10, ρ2,13 =
ρ2,14 ≤ 6, and ρ2,11+ρ2,14 = 7 are satisfied. Similarly, from
the complementary slackness condition, we know from the
dual variable γ150 that link 5 and 6 are the only two links
that have no capacity margin left, and know from dual
variable λ150 that the supply just meet the demand for
each plant, i.e., Bρ150 = H.

Our simulations converged using small constant β and
diminishing αk as described. The main ADMM conver-
gence results do not directly apply to our problem however,
and so classifying constants for which convergence can be
guaranteed is the subject of future work.

The objective addressed in this section is intended to
produce a sparse portion of the network that can be used
for stabilization, and often does, as illustrated with our nu-
merical example. There are cases where the optimization
problem may indeed have a sparse solution, but may be
indifferent between it and other solutions. When finding a
sparse solution is desired in such a case, one possibility is
to use the solution to this problem as an initial point for
the nonconvex problem with objective norm 1 − ε, for a
small ε > 0, which would no longer be indifferent. Other
ideas for dealing with situations where the 1-norm does not
distinguish between sparse and non-sparse solutions are

discussed in (Pilanci et al. (2012)). The decomposability of
these algorithms could be another subject of future work.

8. CONCLUSION

We considered the problem of stabilizing plant nodes
over a network that includes data rate-limited links. In
particular we sought to decompose a key part of that
stabilization problem into local optimization problems.
We showed how the optimization problem can indeed
be decomposed using dual decomposition for most cost
functions; namely, for p-norms of the pseudorate vector
where p > 1. We then developed a method to address the
1-norm which used ideas from ADMM, and showed that
we could decompose all but one step of the algorithm.
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