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Abstract: We consider the problem of finding decentralized controllers to optimize an H∞-
norm. This can be cast as a convex optimization problem when certain conditions are satisfied,
but it is an infinite-dimensional problem that still cannot be addressed with existing methods.
We useQ-parametrization to approach the original problem with a sequence of finite-dimensional
problems. A method is discussed to solve the resulting finite-dimensional approximated convex
problem. It is then shown how this problem can be cast as a semidefinite program and generally
solved much more efficiently.
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1. INTRODUCTION

Decentralized control has long been the focus of a variety
of research, as it is of great interest to have controllers
which rely only on local measurements in a complex sys-
tem. The design of decentralized controllers with optimal
performance is intractable in general however.

The main techniques for centralized H∞ control, linear
matrix inequalities (LMIs) (Gahinet and Apkarian (1994))
and Ricatti equations (Doyle et al. (1989)), do not allow
one to optimize directly over the controller, and thus do
not present an obvious way to allow one to place con-
straints on the controller. There has thus been a variety of
methods trying to solve for structured H∞ controller by
approximation, including homotopy methods for the non-
convex bilinear matrix inequality, cf. (Zhai et al. (2001)),
finding local optima with non-smooth optimization tech-
niques, cf. (Bompart et al. (2007)), and an approach based
on dissipative property of systems which result in sub-
optimal H∞ controller design by LMIs, cf. (Scorletti and
Duc (1997)). There are relationships between structured
control problems and multi-objective problems (Scherer
(2002)), and a finite-dimensional basis parametrization has
been used to approach the solution for the latter (Hindi
et al. (1998)). Subsequent to the initial submission of this
paper was an interesting development (Scherer (2013)),
whereby if both the plant and controller admit lower tri-
angular structure, exact H∞-optimal state-space solutions
may be found.

When the problem one wishes to solves satisfies a certain
condition, called quadratic invariance, the optimal decen-
tralized control problem may be cast as a convex optimiza-
tion problem, regardless of which closed-loop norm the
designer wishes to optimize (Rotkowitz and Lall (2006b)).

The resulting problem is infinite-dimensional and still non-
trivial, particularly for certain objectives. When the ob-
jective is the H2-norm, it was shown in (Rotkowitz and
Lall (2006b)) that the problem can be further reduced
to an unconstrained optimal control problem and then
solved with standard software. Some recent progress has
also been made to directly compute the optimal state-
space controller parameters for some specific information
constraints in the H2 case (Lamperski and Doyle (2012);
Lessard (2012); Shah and Parrilo (2010)).

As with centralized control, there are many cases where
one must optimize for the worst-case, such as the decen-
tralized control of smart structures to prevent failure dur-
ing earthquakes (Wang et al. (2009)), and thus for which
H∞-norm is more appropriate objective. There are further
well-known advantages in optimizing the H∞-norm with
regards to robustness (Zames (1981)). We thus address
optimal decentralized control for the H∞-norm in this
paper.

When the problem is quadratically invariant, we use Q-
parametrization to get a sequence of finite-dimensional
problems whose solutions approach that of our original
problem, and discuss methods for solving these, which
could easily be adapted for any norm of interest. For our
main result, we show how the main result of (Scherer
(2000)) can be used to recast any of the optimization
problems in this sequence as a semidefinite program (SDP)
when the norm of interest is indeed the H∞-norm.

Although this paper mainly focuses on discrete-time sys-
tems, by selection of appropriate basis, continuous time
counter parts could be derived similarly. The paper also
focuses on sparsity constraints, where each control action
may be a function of some measurements but not others,
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but one could easily adapt the developed methods for
delay constraints, where each control action may also be a
function of certain measurements after a specified amount
of time has passed.

This paper is organized as follows. Section 2 will introduce
some notations and preliminary definitions used through
this paper. We formulate the problem of finding an optimal
decentralized controller in Section 3. Quadratic Invari-
ance (QI) is discussed in Section 4. Section 5 demon-
strates the finite basis used for approximating an infinite
dimensional controller and its corresponding state-space
representation. In Section 6, we show how, for any norm,
Q-parametrized decentralized controller could be thought
of as static output feedback (SOF) with sparsity pattern
imposed on a static gain (whenever quadratic invariance is
satisfied), and proceed to solve it in case of H∞ norm with
help of method proposed by (Scherer (2000)). A numerical
example is provided in Section 7 to further inspect different
aspects of methods discussed throughout this paper.

2. PRELIMINARIES

We define some standard notation, mainly for the function
spaces needed, in Section 2.1, develop the two-input two-
output framework in Section 2.2, and introduce some
notation that will help encapsulate the main type of
decentralization we consider in Section 2.3.

2.1 Function spaces

We use the following standard notation. Denote the unit
disk by D =

{
z ∈ C | |z| < 1

}
and unit circle by ∂D,

and the closed space outside the unit disk by D+ =
{
z ∈

C | |z| ≥ 1
}
. We define transfer functions for discrete-

time systems determined on the unit circle. A rational
function G : ∂D → C is called real-rational if the
coefficients of its numerator and denominator polynomials
are real. Similarly, a matrix-valued function G : ∂D →
Cm×n is called real-rational if Gij is real-rational for
all i, j. Denote by Rm×n

p the set of matrix-valued real-

rational proper transfer matrices Rm×n
p = {G : ∂D →

Cm×n |G proper, real-rational} and letRm×n
sp beRm×n

sp =

{G ∈ Rm×n
p | G strictly proper}. Also let RH∞ be the set

of real-rational proper stable transfer matrices RHm×n
∞ =

{G ∈ Rm×n
p | G has no poles in D+}. It can be shown that

functions in RH∞ are determined by their values on ∂D,
and thus we can regard RH∞ as a subspace of Rp.

Unless otherwise declared, vector norms in this paper are
all standard Euclidean norm ‖v‖2 = v∗v = v̄T v for v ∈ Cn

where superscript ∗ is Hermitian, and inner product is the
standard dot product 〈u, v〉 = u∗v.

A transfer function matrix G ∈ H∞ iff G is analytic on
D+ and ess supω∈[0,2π) σmax

(
G(ejω)

)
< ∞, where σmax(·)

gives the maximum singular value, and for m-by-n G ∈
H∞ its norm is given by

‖G‖H∞
= ess supω∈[0,2π) σmax

(
G(ejω)

)

= ess sup ℜ
(
u∗G(ejω)v

)

where ℜ(·) gives the real part of a complex number, and
the last essential supremum is taken over ω ∈ [0, 2π), u ∈
Cm, v ∈ Cn with ‖u‖ = ‖v‖ = 1.

We could now equivalently define RHm×n
∞ = Rm×n

p ∩

Hm×n
∞ . When the dimensions are implied by context, we

omit the superscripts of Rm×n
p ,Rm×n

sp ,RHm×n
∞ ,Hm×n

∞ .
Let In represent the n× n identity.

2.2 Plant and controller

We suppose that we have a causal, linear time-invariant,

discrete-time generalized plant P ∈ R
(nz+ny)×(nw+nu)
p ,

partitioned as

P =

[
P11 P12

P21 G

]

.

Given a controller K ∈ R
nu×ny

p , we define the closed-

loop map by f(P,K)
def
= P11+P12K(I−GK)−1P21. The

map f(P,K) is also called the (lower) linear fractional
transformation (LFT) of P and K. Note that we abbre-
viate G = P22, since we will refer to that block frequently,
and so that we may refer to its subdivisions without
ambiguity. This interconnection is shown in Figure 1.

y u

z w

K

P11 P12

P21 G

Fig. 1. Linear fractional interconnection of P and K

We suppose that there are ny sensor measurements and
nu control actions, and thus partition the sensor measure-
ments and control actions as

y =
[
yT1 . . . yTny

]T
u =

[
uT
1 . . . uT

nu

]T

and then further partition G and K as

G =





G11 . . . G1nu

...
...

Gny1 . . . Gnynu



 K =





K11 . . . K1ny

...
...

Knu1 . . . Knuny





This will typically represent n subsystems, each with its
own controller, in which case we will have n = ny = nu,
but this does not have to be the case.

2.3 Sparsity patterns

Let B = {0, 1} represent the set of binary numbers.

Suppose that Abin ∈ Bm×n is a binary matrix. The
following is the subspace of Rm×n

p comprising the transfer
function matrices that satisfy the sparsity constraints
imposed by Abin:

Sparse(Abin)
def
=

{
B ∈ Rm×n

p | Bij(e
jω) = 0 for all i, j

s.t. Abin
ij = 0 for almost all ω ∈ [0, 2π]

}

Conversely, given B ∈ Rm×n
p , we define Pattern(B)

def
=

Abin, where Abin is the binary matrix given by:

Abin
ij =

{
0, if Bij(e

jω) = 0 for almost all ω ∈ [0, 2π]

1, otherwise
,

for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.
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Remark 1. Note that one may often wish to generalize
these definitions to account for a partitioning of the
transfer function matrix, with the binary matrix instead
capturing which blocks are non-zero, but as the respective
generalizations of the results are obvious, we will not
bother with the additional notation at this time.

3. PROBLEM FORMULATION

We now introduce the main class of problem we will con-
sider in this paper, and then formulate our optimization
problem.

3.1 Sparsity Constraints

We consider sparsity constraints on controller such that
each control input may access certain sensor measure-
ments, but not others.

We represent sparsity constraints on the overall controller
via a binary matrix Kbin ∈ Bnu×ny . Its entries can be
interpreted as follows:

Kbin
kl =







1, if control input k

may access sensor measurement l,

0, if not,

for all k ∈ {1, . . . , nu}, l ∈ {1, . . . , ny}.

The subspace of admissible controllers can be expressed
as:

S = Sparse(Kbin).

The sparsity pattern of the plant, which is especially
relevant to the controller optimization, is obtained as:

Gbin = Pattern(G)

where Gbin is interpreted as follows:

Gbin
ij =







1, if control input j

affects sensor measurement i,

0, if not,

for all i ∈ {1, . . . , ny}, j ∈ {1, . . . , nu}.

3.2 Problem Setup

Given a generalized plant P and a subspace of admissible
controllers S, the following is the optimal decentralized
control problem we seek to address:

minimize
K∈Rp

‖f(P,K)‖H∞

subject to K stabilizes P

K ∈ S

(1)

Which subsystems can affect others is embedded in the
sparsity pattern of P , and which subsystem controllers
can access the sensor information from which others is
embedded in S. We call the subspace S the information
constraint .

Many decentralized control problems may be expressed in
the form of problem (1), including all of those addressed
in (Qi et al. (2004); Siljak (1994)).

This problem is made substantially more difficult in gen-
eral by the constraint that K lie in the subspace S.
Without this constraint, the problem could be solved with

many standard techniques. Note that the cost function
‖f(P,K)‖ is in general a non-convex function of K. No
computationally tractable approach is known for solving
this problem for arbitrary P and S. For some P and S,
the problem has been shown to be equivalent to a convex
optimization problem.

This is the subject of the next section, and we will then
focus on methods to solve those problems for the H∞-
norm.

4. QUADRATIC INVARIANCE

In this section, we define quadratic invariance, and we
give a brief overview of related results, in particular, that
if it holds then convex synthesis of optimal decentralized
controllers is possible. We then discuss what it means for
the class of problems that we focus on in this paper, control
subject to sparsity constraints.

Definition 2. Let a causal linear time-invariant plant, rep-

resented via a transfer function matrix G in R
ny×nu

p , be

given. If S is a subset of R
nu×ny

p then S is called quadrat-
ically invariant under G if the following inclusion holds:

KGK ∈ S for all K ∈ S.

It was shown in (Rotkowitz and Lall (2006b)) that if S is a
closed subspace and S is quadratically invariant under G,
then with a change of variables, problem (1) is equivalent
to the following optimization problem:

minimize
Q∈RH∞

‖T1 − T2QT3‖H∞

subject to Q ∈ S
(2)

where T1, T2, T3 ∈ RH∞. See Theorem 17 in (Rotkowitz
and Lall (2006b)) for finding T1,T2, T3 and recovering K
from Q. Throughout the rest of the paper we will focus on
this equivalent form instead of (1).

y u

z w

Q

T1 −T2

T3 0

Fig. 2. Model-matching problem from Youla parametriza-
tion

This states that if our problem is quadratically invari-
ant (QI), we may use a particular Youla parametriza-
tion (Youla et al. (1976)) to reduce the problem to the
model-matching problem shown in Figure 2, as one can
for centralized problems, and the constraint on the con-
troller is passed on to the Youla parameter. The opti-
mization problem in (2) is then convex. We may solve
it to find the optimal Q, and then recover the optimal
K for our original problem (1). Similar results have been
achieved (Rotkowitz and Lall (2006a)) for other function
spaces as well, also showing that quadratic invariance
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allows optimal linear decentralized control problems to
be recast as convex optimization problems. This result
also holds, and most of what follows in this paper could
also be adapted, for continuous-time systems. When a
structured, stable, stabilizing controller (which makes this
particular Youla parametrization possible) is unknown, a
more general parametrization exists (Sabau and Martins
(2012)) leading to a more general affine constraint on the
parameter; adapting our results for this problem could be
a topic of further research.

While the problem is convex, the domain is infinite-
dimensional, and solving it is certainly not straightfor-
ward. This equivalence holds for arbitrary closed-loop
norm in the objective, and when the norm of interest
is instead the H2-norm, several methods have been put
forth for addressing the resulting problem, as discussed in
Section 1.

We focus on how to approach the optimal solution when
the objective of interest is instead the H∞-norm.

4.1 QI - Sparsity Constraints

For the case of sparsity constraints, it was shown in
(Rotkowitz and Lall (2006b)) that a necessary and suf-
ficient condition for quadratic invariance is

Kbin
ki Gbin

ij Kbin
jl (1−Kbin

kl ) = 0, (3)

for all i, l ∈ {1, . . . , ny}, and all j, k ∈ {1, . . . , nu}.

KjlGijKki

Kkl

ylujyiuk

Fig. 3. QI interpretation for sparse controllers

An interpretation (see Figure 3) is that if a sensor measure-
ment (yl) can indirectly effect a control input (uk) through
the plant, then that controller must be able to directly
observe that measurement (Kbin

kl = 1). This is closely
related to the notion of partial nestedness (Ho and Chu
(1972); Rotkowitz (2008)), and many problems of interest
either fall in this class or can be relaxed or approximated
to fall in this class.

5. Q-PARAMETRIZATION

In this section, we discuss a method for addressing the
convex infinite-dimensional model-matching problem (2),
known as Q-parametrization. This has long been used
for the centralized problem (without the constraint) for
objectives where more elegant solutions are not or were
not available (including multiple-objective problems, cf.
Hindi et al. (1998)) and has been suggested as a possible
method for (2) since the QI results were first available. The
idea is to use a finite-dimensional basis to parametrize the
domain RH∞, where the limit of the span will be dense in
the original domain. In discrete-time, the usual choice of
basis has a nice interpretation in the time-domain, as each
basis vector corresponds to a finite impulse response of

a different delay and in a different part of the controller.
Suppose we choose a maximum order of N for the map
between each input and output of the controller parameter.
Then for each i ∈ {1, . . . , nu} and j ∈ {1, . . . , ny}, we have
the approximate parametrization:

Q̂ij(z) =

N∑

k=0

αijk

zk
(4)

and there are nu · ny · (N + 1) variables to find.

We can then state the following parametrized approxi-
mation to our convex decentralized model-matching prob-
lem (2):

minimize ‖T1 − T2Q̂T3‖H∞

subject to Q̂ij(z) =

N∑

k=0

αijk

zk
∀ i, j

Q̂ ∈ S

(5)

with variables Q̂ ∈ RH
nu×ny

∞ , α ∈ Rnu·ny·(N+1), and
assuming that we substitute the first constraint into the
objective, we have a finite-dimensional convex optimiza-
tion problem in the vector α.

We can find a state-space representation of Q̂ as follows.

For each j ∈ {1, . . . , ny}, let A
Q
j ∈ RN×N , and BQ

j ∈ RN :

AQ
j =








0 1 · · · 0
...
. . .

. . .
...

...
. . . 0 1

0 · · · · · · 0







, BQ

j =







0
...
0
1







and for each i ∈ {1, . . . , nu} and j ∈ {1, . . . , ny}, let

CQ
ij = [αijN · · · αij1] , DQ

ij = [αij0].

Then define

AQ = diag(AQ
1 , ..., A

Q
ny
), BQ = diag(BQ

1 , ..., BQ
ny
),

CQ =







CQ
11 · · · CQ

1ny

...
. . .

...

CQ
nu1
· · · CQ

nuny






DQ =







DQ
11 · · · DQ

1ny

...
. . .

...

DQ
nu1
· · · DQ

nuny







and we have

Q̂(z) =

[
AQ BQ

CQ DQ

]

(z) (6)

Remark 3. With this representation, all of the parameters
αijk have been gathered in only CQ and DQ. This will
allow the problem to be cast as one of finding an optimal
static controller.

Remark 4. This representation shows that we can have

different AQ
j for different j, as long as the controller Q

remains stable, and thus it is possible to have a different
basis for each input.

Remark 5. With this representation, we get Q̂ij = CQ
ij (zI−

AQ
j )

−1BQ
j +DQ

ij .

With the parameters all gathered in CQ, DQ, we now state
a lemma showing how to impose the information constraint
on these variables.
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Lemma 6. If Q̂ =

[
AQ BQ

CQ DQ

]

, with AQ, BQ, CQ, DQ given

as above, then Q̂ ∈ S if and only if

CQ
ij = 0 for all (i, j) s.t. Kbin

ij = 0

DQ
ij = 0 for all (i, j) s.t. Kbin

ij = 0
(7)

Proof. It is straightforward to verify that the state-space

representation gives Q̂ij(z) =
N∑

k=0

αijk

zk . It then follows that

Q̂ ∈ S if and only if for all (i, j) such that Kbin
ij = 0, and

for all k ∈ {0, 1, . . . , N} we have that αijk = 0, and this
occurs if and only if (7) holds.

Remark 7. We note here how we would incorporate delay
constraints. We would need to hold αijk to 0 for k
below the number corresponding to the specified delay for

ui ← yj , and would thus hold DQ
ij and the necessary parts

of CQ
ij to be 0.

We can then form an equivalent optimization problem
using this lemma and the approximated version of mini-
mization problem (2) by replacing Q with Q̂ and optimize
over CQ ∈ Rnu×nyN , and DQ ∈ Rnu×ny , thus leaving the
following finite-dimensional convex optimization problem

minimize ‖T1 − T2Q̂T3‖H∞

subject to Q̂ =

[
AQ BQ

CQ DQ

]

CQ
ij = 0 for all (i, j) s.t. Kbin

ij = 0

DQ
ij = 0 for all (i, j) s.t. Kbin

ij = 0

(8)

with variables Q̂ ∈ RH
nu×ny

∞ , CQ ∈ Rnu×nyN , DQ ∈
Rnu×ny , and assuming that we substitute the first con-
straint into the objective, we have a convex finite-
dimensional problem in the matrices CQ, DQ.

5.1 Subgradient

We first address problem (5) directly, as, for a given value
of variable α, we can compute the objective and can com-
pute a subgradient. We can thus solve the parametrized
optimal decentralized control problem with various meth-
ods. We demonstrate it here using the ellipsoid method. If
evidence arises that this is remotely competitive with the
performance of our main result, then more sophisticated
algorithms will be explored for this direct approach.

The main ideas are from (Boyd and Barratt (1991)) and
are adapted for the decentralized case. The advantage of
the basic approach in this subsection, is that it can easily
be adapted for other objectives of interest, such as other
norms or multiple objectives.

Given a functional f : X 7→ R, a subgradient of f at x0

evaluated on y, denoted by f sg(x0, y) : X × X 7→ R, is a
linear functional in its second variable, such that:

f(y) ≥ f(x) + f sg(x0, y)− f sg(x0, x0), ∀y ∈ X (9)

We want to obtain a subgradient of H∞-norm of closed
loop map T1−T2QT3 when controller Q is approximated as

Q̂(z) =
∑

i,j

∑N
k=0

αijk

zk Eij , where Eij is the zero matrix

with same size as Q except for its (i, j)th element which

is one. By substituting Q̂ for Q, close loop map can be
written as a function of parameters α = {αijk} as

H(·) : Rnuny(N+1) 7→ RHnu×ny

∞

H(α) = T1 − T2

(
∑

i,j

∑N

k=0

αijk

zk
Eij

)

T3
(10)

We will derive the subgradient vector in two steps, first
by describing a subgradient of f(α) = ‖H(α)‖∞ at α0

evaluated on α1, i.e. f sg(α0, α1), and then will derive the
subgradient vector explicitly. Following will achieve the
first step

Theorem 8. For f(α) = ‖H(α)‖∞, a subgradient of f at
α0 evaluated on α1 is given by

f sg(α0, α1) =

−ℜ

(

u∗
0T

ω0
2

(
∑

i,j

N∑

k=0

α1
ijke

−jkω0Eij

)

Tω0
3 v0

)
(11)

The equation is illustrated as follows, first we compute
frequency ω0 at which H∞ norm of H(α0) is achieved (i.e.
σmax

(
H(α0)(ejω0)

)
= ‖H(α0)(ejω)‖H∞

), then singular

value decomposition of H(α0)(ejω0) would be computed
to have H(α0)(ejω0) = UΣV ∗, then first columns of U and
V are extracted and name as u0, and v0. Now we can form
(11), where Tω0

i = Ti(e
jω0), i = 1, 2, 3.

Proof. To prove that (11) is a subgradient of f , we should
show that it satisfies the subgradient inequality (9), but
first observe that based on definition we have

f(α0) = ‖H(α0)‖∞ =ℜ
(
u∗
0

(
H(α0)(ejω0)

)
v0
)

=ℜ(u∗
0T

ω0
1 v0) + f sg(α0, α0)

(12)

Next we can see that ∀α1 ∈ Rnuny(N+1) :

f(α1) = ess sup
ω,‖u‖=‖v‖=1

ℜ
(
u∗

(
H(α1)(ejω)

)
v
)

≥ ℜ
(
u∗
0

(
H(α1)(ejω0)

)
v0
)

= ℜ (u∗
0T

ω0
1 v0) + f sg(α0, α1)

(12)
= f(α0)− f sg(α0, α0) + f sg(α0, α1)

⇒ f(α1) ≥ f(α0) + f sg(α0, α1)− f sg(α0, α0) ∀α1

(13)

Now we can proceed by computing the subgradient vector,
more specifically. We are looking for φ ∈ Rnuny(N+1) such
that 〈φ, α1〉 = f sg(α0, α1)

Theorem 9. Subgradient vector φ is given by its elements
as

φijk = −ℜ
(
[u∗

0T
ω0
2 ]i[T

ω0
3 v0]je

−jkω0
)

(14)

where [·]i denotes i
th element of a vector.

Proof. RHS of (11) is can be written as

(11) = 〈φ, α1〉

= −
∑

i,j

∑N

k=0
α1
ijkℜ

(
u∗
0T

ω0
2 EijT

ω0
3 v0e

−jkω0
)

= −
∑

i,j,k

α1
ijkℜ

(
[u∗

0T
ω0
2 ]i[T

ω0
3 v0]je

−jkω0
)

⇒ φijk = −ℜ
(
[u∗

0T
ω0
2 ]i[T

ω0
3 v0]je

−jkω0
)

(15)

NecSys 2013
September 25-26, 2013. Koblenz, Germany

305



This subgradient vector φ is used in implementations of
ellipsoid method in later sections.

6. LMI FOR H∞-NORM WITH
Q-PARAMETRIZATION

This section contains our main result. We first review a
key result in Section 6.1 establishing that finding the H∞-
optimal static controller for certain plants, including those
resulting from a Youla parametrization followed by a Q-
parametrization, can be cast as a semi-definite program.
We then show in Section 6.2 how this result can be used
together with the quadratic invariance results and those in
the prequel to cast the H∞-optimal decentralized control
problem as an SDP.

6.1 Static Output Feedback

In this subsection, we review the main result of (Scherer
(2000)), which will be crucial to achieve our main result.

Theorem 10. Consider generalized discrete-time plants
with state-space realization that can be partitioned as
follows:







Â1 Â B̂11 B̂

0 Â2 B̂21 0

Ĉ11 Ĉ12 D̂11 D̂12

0 Ĉ D̂21 0







(16)

The optimal static output feedback controllerKstatic along
with optimal H∞ norm, can be found by solving the
following SDP

minimize γ

subject to







X̃ 0 ÃT C̃T

0 γI B̃T D̃T

Ã B̃ X̃ 0

C̃ D̃ 0 γI






≻ 0

(17)

with variables γ ∈ R, and real matrices of appropriate
dimension Kstatic, E = ET , S, and R = RT , as well as
Ã, X̃, B̃, C̃, and D̃ which are given by the additional
constraints

Ã =

[
Â1E Â1S + Â+ B̂KstaticĈ − SÂ2

0 RÂ2

]

,

B̃ =

[
B̂11 + B̂KstaticD̂21 − SB̂21

RB̂21

]

,

C̃ =
[

Ĉ11E Ĉ12 − D̂12K
staticĈ + Ĉ11S

]
,

D̃ = D̂11 − D̂12K
staticD̂21,

X̃ = diag(E,R),

(18)

which all are affine in all of the variables.

Proof. See (Scherer (2000)).

The paper also notes that plants without a 22-block
(where the controller inputs to the plant do not effect the
measurements which the controller may act on) can be
partitioned as in (16), and are thus amenable to optimal
static feedback with this SDP.

6.2 LMI Formulation with Quadratic Invariance

In this subsection we state our main result, showing
how the problem of finding the H∞-optimal decentralized
controller for a QI problem, after using Q-parametrization,
can be formulated as an SDP.

T̃

T1 −T2
z w

T3
yŷ u0

Q
dyn

AQ

InyN

0

BQ

0
Iny

Qstatic

[CQ, DQ]

Fig. 4. T̃ defined by augmenting plant with fixed part of
parametrized controller

The model-matching problem has (by definition) no 22-
block, and can thus be represented as in (16). The
parametrized controller that we are trying to design for
it, was shown to be separable into a fixed dynamic part,
which can be represented as

Qdyn =





AQ BQ

InyN 0
0 Iny



 ,

and a variable static part, which can be given as the matrix
Qstatic = [CQ DQ].

The fixed dynamic part (Qdyn) can then be considered
part of an augmented plant, as illustrated in Figure 4.
This leaves us to optimize over static controllers (matrices)

Qstatic for the augmented plant T̃ .

A state-space realization for T̃ is given by:











A1 0 0 0 B1 0
0 A2 0 0 0 B2

0 0 A3 0 B3 0
0 0 BQC3 AQ BQD3 0
C1 −C2 0 0 D1 −D2

0 0 0 InyN 0 0
0 0 C3 0 D3 0












(19)

Where (Ai, Bi, Ci, Di) is a state-space realization of Ti for
i = 1, 2, 3. This partition still comports with (16). We
can then apply the results of the previous subsection, and
combine this with Lemma 6, to arrive at our main result.

Main result. The parametrized version of main prob-
lem (8) is solvable by the following SDP:

minimize γ

subject to







X̃ 0 ÃT C̃T

0 γI B̃T D̃T

Ã B̃ X̃ 0

C̃ D̃ 0 γI






≻ 0

CQ
ij = 0 for (i, j) s.t. Kbin

ij = 0

DQ
ij = 0 for (i, j) s.t. Kbin

ij = 0

(20)

with variables γ ∈ R, and real matrices of appropriate
dimension Qstatic = [CQ DQ], E = ET , S, and R =
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RT , as well as Ã, X̃, B̃, C̃, and D̃ which are given
by the additional affine constraints (18), where in each
constraint, the hat constants defined by (16), are set to
their counterparts in (19), and the variable Kstatic is
replaced by Qstatic.

After obtaining the optimal Qstatic = [CQ DQ], we can

recover the optimal Q̂ as in (6). Then if we let Q ≈ Q̂, we
can recover the approximated controller K by Theorem 17
in (Rotkowitz and Lall (2006b)).

7. NUMERICAL EXAMPLE

In this section, we consider some numerical examples. We
use a discretized version of the same plant which was used
in (Rotkowitz and Lall (2006b)) to demonstrate finding
the H2-optimal decentralized controllers, along with the
same sequence of information constraints.

Consider an unstable lower triangular plant

G(z) =








s(z) 0 0 0 0
s(z) u(z) 0 0 0
s(z) u(z) s(z) 0 0
s(z) u(z) s(z) s(z) 0
s(z) u(z) s(z) s(z) u(z)








with s(z) = 0.1
z−0.5 , u(z) =

1
z−2 , and P given by

P11 =

[
G 0
0 0

]

P12 =

[
G
I

]

P21 = [G I]

and a sequence of sparsity constraints Kbin
1 , . . . ,Kbin

6

Kbin
1 =








0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 1








Kbin
2 =








0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
1 1 0 0 1








Kbin
3 =








0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
1 1 0 0 0
1 1 0 0 1








Kbin
4 =








0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
1 1 0 0 0
1 1 1 0 1








Kbin
5 =








0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
1 1 1 0 0
1 1 1 0 1








Kbin
6 =








1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1








defining a sequence of information constraints Si =
Sparse(Kbin

i ) such that each subsequent constraint is less
restrictive, and such that each is quadratically invariant
under G. We also use S7 as the set of controllers with no
sparsity constraints; i.e., the centralized case.

First, we apply our main result to the centralized problem,
where we can compute the optimal solution with existing
software. This serves as a sanity check to ensure that we
get convergence to the optimum, and to explore how the
parametrized solutions converge as the order grows.

Figure 5 plots the optimal H∞-norm obtained by solving
our SDP (20) with no sparsity pattern, as the order of
approximation N , increases from 1 to 13, which is solved
by using cvx toolbox (CVX Research, Inc. (2012)) for
MATLAB. It shows that as expected, as N increases from

2 4 6 8 10 12
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16

18

Q-param order (N )

O
p
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m
a
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∞
n
o
rm

Q-param approximation of centralized controller

Fig. 5. Optimal norm versus order of estimation N for
centralized controller

1 to 13, the optimal H∞-norm decreases and converges
toward the actual solution, indicated by the dashed line,
which was obtained using MATLAB’s internal function
hinfsyn. The plant, and thus the actual optimal con-
troller, are of order 5, and we see that we get convergence
after increasing the order slightly beyond that.
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Time efficiency vs Q-param order (for S4)

 

 

SDP

Ellipsoid

Fig. 6. Time efficiency of different methods for decentral-
ized case S4

We then apply our results to the decentralized problems,
Figure 6 shows how the two methods compare for the
information constraint S4, as the order N again varies
from 1 to 13. The SDP (20) is solved first, and the time it
takes is shown with the solid line. The ellipsoid method is
then used, with its stopping criterion chosen based on the

optimal value of the SDP f∗
SDP, setting

fbest
ellip−f∗

SDP

f∗

SDP

< 0.1,

such that we stop when we have an optimal point that
is at least within 10% of the SDP solution. CPU time
is reported from a machine with 2.3GHz CPU, and 8GB
of RAM. Although SDP did always better than ellipsoid
method for run of same algorithm on other random stable
lower triangular plants, but their difference was not always
in such a big scale.

We then turn our attention to computing and comparing
the H∞-optimal solutions for the sequence of sparsity
constraints. The results are presented in Figure 7 and are
computed by solving the SDP (20) for Kbin

i , i = 1, · · · , 6,
and i = 7 for centralized controller. In each case, N is
fixed at 13. This shows, as expected, that as we relax the
information constraint, the optimal norm would also be
non-increasing, since Si ⊂ Sj , for i < j.
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Fig. 7. Optimal norm for different sparsity patterns

Comparing these solutions to those for the H2-norm in
(Rotkowitz and Lall (2006b)), we see that there is again
little-to-no difference from S1 to S3, as we allow the first
measurement to be seen by the fourth and fifth controllers.
There is again a jump in performance as we move to S4 and
the fifth controller is able to see the third measurement.
In the H2 case, there was little change to S5, but the
norm decreased when moving to S6 as a lower-triangular
controller is considered; for our H∞-norm there is very
little gain from S4 to the lower triangular controller. In
both cases, there is still a significant drop in the optimal
norm from lower-triangular to fully centralized.

8. CONCLUSION

We considered the problem of finding H∞-optimal con-
trollers subject to decentralization constraints, particu-
larly for quadratically invariant constraints. We addressed
the convex but infinite-dimensional problem that arises
with Q-parametrization, allowing us to instead consider a
sequence of finite-dimensional convex problems. We de-
rived the subgradient for this problem, allowing many
standard convex optimization techniques to be applied,
and demonstrated this with an ellipsoid method. For our
main result, we showed that this problem can be further
converted into an SDP (20), with vastly superior perfor-
mance.
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