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Abstract: We present a new framework, using a model-based bootstrap with pre-
whitening and post-blackening, to analyze the robustness of overall controller
synthesis methods to model uncertainties. This considers both the system iden-
tification and the subsequent controller synthesis together as an overall synthesis
method to be analyzed. This framework is extremely flexible, can be used with
any identification or synthesis method, and can easily be extended to many other
types of problems. As a very encouraging first step, we see a dramatic confirmation
of the dangers associated with certain synthesis methods.
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1. INTRODUCTION analysis in many fields. However, it has been slow
This paper proposes a framework for studying the
robustness of controller design. The framework is
geared for a great deal of flexibility, so that the
system identification and the controller synthesis
methods may be jointly analyzed, so that any such
methods can be studied, and with an eye towards
more complicated synthesis problems where other
tools may not be available, such as decentralized
identification and control, or nonlinear control.

The stage of the research presented is preliminary,
and several aspects of the procedure are fairly
heuristic. The preliminary results are very promis-
ing however, and this combined with the flexibility
offered suggest that this may be a worthwhile
avenue for future research.

1.1 Prior Work

As the bootstrap celebrates its twenty-fifth an-
niversary (Efron, 1979), it has revolutionized data
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rk its way into the engineering literature, and
ticular, into systems and control theory.

h-level introduction to the bootstrap was
n for the signal processing community,
ubir and Boashash, 1998). Most mentions
bootstrap in the controls literature per-

o system identification. A survey paper of
ation methods in paper machining (Wang
, 1993) lists several bootstrap applications.
ootstrap was used to estimate the variance
ermodeled system models, or models which
t flexible enough to describe the underlying
s, in (Tjarnstrom and Ljung, 2002), with

asic conclusion that the estimates were in
ent with Monte Carlo simulations. It was

for improved tests of rank determination
mba-Mendez and Kapetanios, 2004).

e attempt to use the bootstrap in controller
esis can be found in (Aronsson et al., 1999).



2. PRELIMINARIES

2.1 Controller synthesis

The standard two-input two-output framework is
illustrated in Figure 1.
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Fig. 1. Linear fractional interconnection of P
and K

The objective is to find K such that the mapping
from w to z is as small as possible, where small
may be defined in many ways, usually as one
of several system norms. When these signals as
infinite-dimensional, as they often are, we must
also ensure that all nine of the maps in the
diagram, from (w, v1, v2) to (z, u, y), are all stable.

The generalized plant P is appropriately parti-
tioned into four subblocks, and the P22 block
which takes control inputs to sensor measure-
ments we represent as G. When the plant and
controller are assumed to be linear, this optimal
control problem may be written as follows.

minimize ‖P11 + P12K(I − GK)−1P21‖
subject to K stabilizes P

(1)

2.2 System identification

In this framework, the system identification prob-
lem is to estimate G given measurements of u
and y. This is an estimation problem, so it is not
surprising that the bootstrap has begun to emerge
here sooner than other areas of control. However,
it is important to note that the objective of es-
timation may be fundamentally different when
the ultimate goal is estimation for the purpose of
control (Hjalmarsson et al., 1994; Lindqvist and
Hjalmarsson, 2001).

This paper addresses this issue by using bootstrap
techniques to analyze the variability of the system
identification method together with the controller
synthesis method.

2.3 Data sets

This section gives a brief description of the data
sets considered in this paper.
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Hair Dryer This data is taken from the
b system identification toolbox, and is from
cess similar to a hair dryer. Air is fanned
gh a tube and heated at the inlet, with the
being the power of the heating device, and
tput is the outlet air temperature. The data

wn in Figure 2 with the input on the bottom,
tput on the top, and the means removed.
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DC Motor This data is taken from an
version of the Matlab system identification
x, and is from a simulated DC motor. The
is a voltage, and while the output in the
x is both an angular position and velocity,

ke the output to be just the position, so that
n observe what happens when a controller
nly access part of the state of the system
ntrolling. The detrended data is shown in

e 3.
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. BOOTSTRAPPING TECHNIQUES

tandard bootstrap, and much of the discus-
n (Efron and Tibshirani, 1993) applies only
ependent data. Extensions have been made
endent data such as time series over the past
e and a half, and some of these techniques
scussed in (Davison and Hinkley, 1997). This
n discusses how to further extend these tech-
s to input-output time series such as the data
ered here. Clearly, naively bootstrapping

-output pairs would result in whitening and



obliterate the relationship of the data if there is
any delay between the input and the output. It
seems likely that a simple extension of the block
bootstrap technique to input-output data, that is,
randomly choosing blocks of time for which both
the input and output are taken, would also result
in excessive whitening since the input at the end
of each block would be affecting an output from a
different block. We consider two of the techniques
outlined in (Davison and Hinkley, 1997) to avoid
whitening in time series, their possible extensions
to I-O data, and analogies with bootstrapping
regressions.

3.1 Blocks of blocks

With this method, each block is considered sep-
arately when calculating the statistic of interest.
This bootstrapping technique itself would extend
seamlessly to I-O data, as we could just take
the input and output data for each block. It’s a
very appealing option, since the inputs at the end
of each block and the outputs at the beginning
of each block would no longer erroneously enter
into coefficient estimation. The drawback seems
to be that since this does not actually produce
a new series, it may not be clear how to extend
the calculation of the statistic, usually a function
of the time series, to the block of blocks. This
wasn’t a problem for the AR(1) example worked
out in (Davison and Hinkley, 1997), but it’s non-
trivial for the statistics we would like to study,
namely, closed-loop performance.

3.2 Pre-whitening and post-blackening

With this method, a model is fit to the time series,
and then the residuals, which have now been pre-
whitened, are subject to a block bootstrap. This is
an appealing compromise between bootstrapping
residuals and blocks in that it attempts to remove
trends which will be broken by the resampling, but
then acknowledges that some trends may remain.
It also extends easily to I-O data, as we can model
the output as a function of the input, then block
bootstrap the residuals, or innovations, and then
regenerate the output time series with the model
and the new set of innovations.

3.3 Comparison

Since the input remains fixed in the latter tech-
nique, it seems more appealing for cases where
the input is chosen by the experimenter, rather
than being observed, just as bootstrapping resid-
uals for regression analysis is reasonable when the
independent variables are chosen. The blocks of
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s technique seems more appropriate when
is randomness associated with the input as
s the output, just as bootstrapping pairs
re often used for regression analysis when
dependent variable is observed. This would
e argument for using blocks of blocks with
ir dryer data and DC motor data. However
uld like to develop a robust computational
work in which different system identification
ds, controller synthesis methods, and per-
nce measures can be easily swapped, and
reconstruction of a new output series for

ootstrap sample with whitening and black-
is desired, and the need to adapt different
ons of time series to blocks of blocks is
itive. Moreover, in many cases we do get
ose the input data for system identification,
he main contribution of this paper is in-
d to be the introduction of an extremely flex-
chnique, not to resolve anything about these
ular data sets. We thus use pre-whitening
ost-blackening.

esiduals were bootstrapped such that the
length was always equal to the order of the
l fit during the pre-whitening. Trying out
probably longer block lengths, would be a

while future step.

uld be noted that despite the the different
cation for each, bootstrapping pairs or resid-
or regressions often produces very similar
s.

4. MAIN PROCEDURE

input-output data for a system, a method
stem identification, a procedure for synthe-
an optimal (in some sense) controller, and
sure of performance, we apply the following.
constructing P from G at any stage, we are

ing to P as the generalized plant and to G
lower right-hand block P22 as in Figure 1,

e construct the rest of P so as to minimize
x
ηu

]
. Thus what we are attempting to keep

is a vector of the state and the input, and η
off their relative importance.

stimate Ĝ from
[
y u

]
, the original data.

onstruct P̂ from Ĝ.
ynthesize K based on P̂ .
or each b in 1:B
· Generate y∗b from Ĝ with pre-whitening

and post-blackening.
· Estimate G∗b from

[
y∗b u

]
, the boot-

strapped data.
· Construct P ∗b from G∗b.
· Find θ̂∗b, the performance of K closed

around P ∗b.



In words, we first perform system identification on
the original data to find Ĝ, construct the gener-
alized plant P̂ , then synthesize optimal controller
K based on that model. Then for each bootstrap
repetition, we construct a new output time series
using pre-whitening and post-blackening as de-
scribed above, find a new model G∗ for the system
with the same method on the new data, construct
P ∗, and measure the performance of the system
with K closed around P ∗.

This was done for B = 1000 bootstrap samples on
the dryer and motor data for each of two different
identification methods and two different synthesis
methods. The performance measure was fixed as
the H∞-norm, and evaluated with dhfnorm() from
the μ-Analysis and synthesis toolbox. Plots were
constructed for each of the eight combinations
showing the 1000 bootstrapped outputs, along
with the original data, but due to their enormous
size, they have been omitted.

4.1 System identification methods

The two system identification functions used are
pem(), a prediction error method from the Mat-
lab system identification toolbox, and n4sid(), a
subspace method from the same toolbox. Both
are relatively ‘black-box’ methods which estimate
the order of the model as well as the coefficients.
Since these and other methods can of course fit the
data points well, a big part of this contribution is
to present a framework to analyze the ultimate
efficacy of these methods after they are used to
not only estimate a model, but to find a controller
based on that model and connect it to the plant.
In some sense, we will also demonstrate the danger
of using black-box methods in general.

4.2 Controller synthesis methods

The first synthesis method used is minimization of
the H2-norm, or LQG control, and is interpreted
as minimizing the RMS error of the output sub-
ject to a white noise input. This was done with
dh2lqg() from the Robust control toolbox. The
second method minimizes the H∞-norm, which is
also the norm which we will use to measure perfor-
mance on each bootstrap sample for all synthesis
methods. This is done using dhinfopt(), also from
the Robust control toolbox.

5. RESULTS

For each set of data and estimation method, we
present a pair of histograms, one for each synthesis
method. On the x-axis is the log base 10 of the
closed loop H∞-norm, for each of the samples
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the closed-loop was still stable. All were
ed using η = 1, so that the size of the

and input were penalized equally. Each plot
ndicates the data set, the sysid method, the
ller synthesis method, and how many of the

were unstable. The dashed line corresponds
norm with the original data, consistent with
nvention in the bootstrap literature.

ear that for the first pair, shown in Figure 4,
synthesis methods have yielded similar con-
s, as the histograms and number of unstable
ces are nearly identical.

eral, there seems to be less variability as-
ed with the performance when the subspace
ation method is used rather than the predic-
rror method.

so see that the closed-loop performance for
air dryer data exhibits a bimodal nature,
that of the DC motor does not.

e hair dryer data, we had full state feedback,
hus guaranteed stability margins for the
llers derived with H2 synthesis. We see
bout 3% of the bootstrap samples had an

ble closed-loop when the prediction error
d was used for identification, and less than

hen the subspace method was used, and that
as nearly identical whether the controller

ynthesized to optimize the H2-norm or the
orm.

he DC motor data, however, we did not
full state feedback. It was shown in (Doyle,
that one could find the controller which
minimize the closed-loop H2-norm, and the
-loop could still be arbitrarily close to unsta-
t was soon after suggested that minimizing
∞ norm would be a more sensible thing to
many cases.

ng at the third pair of histograms in Fig-
where the prediction error method is used

e DC motor data, it seems that we have en-
ered an example of such a synthesis problem.
e histogram on the left side of this figure,
st see a dramatic confirmation of the LQG
r. The controller is found to minimize the
rm, and a whopping 303 out of the 1000
trap samples have an unstable closed loop.

en see a confirmation of the increased ro-
ess associated with using H∞ synthesis in
situations as we look to the histogram on

ght side of this figure. Given the same input-
t data and the same sysid method, but
g the controller to minimize the H∞-norm,
of the bootstrap samples yield an unstable

-loop, and the histogram is well behaved
ise.
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This provides a nice sanity check, showing that
our traditional notions of robustness are consis-
tent with those explored here with our histograms.
It also elucidates the possibility that when this
framework is applied to more complex problems,
other robustness pitfalls which we do not yet know
of may be identified.

6. FUTURE WORK

6.1 Adjustments within framework

Several tweaks to the procedure used here would
be worth exploring. In particular, the same esti-
mation technique was always used to fit the initial
model that the controller was synthesized around,
and to estimate the model of each of the bootstrap
samples. It may be more realistic to carefully pick
the initial model, then fit larger models on the
bootstrap samples.

6.2 Bagging

The surprising variability of closed-loop perfor-
mance after the controller is optimized for one
set of data suggests that a technique like bag-
ging may be beneficial to synthesize more ro-
bust controllers. This would involve synthesizing
a controller based on each bootstrap sample, in
other words, performing system identification and
controller synthesis for each artificial set of input-
output data, and then averaging the controllers in
the appropriate sense.

6.3 Theory

The bootstrap is particularly useful for generating
standard deviations and confidence intervals for
statistics where no other method is known. While
we are able to study the variability of the closed-
loop performance, the theory which allows con-
fidence intervals to be easily deduced from such
histograms may break down when the statistic
of interest can take on infinite values, which is
what happens when the closed loop goes unstable.
Adapting this theory so that confidence intervals
could be obtained for closed-loop performance
may be a worthwhile step.

7. CONCLUSIONS

We have presented a framework to analyze the
robustness of overall controller synthesis meth-
ods to model uncertainties. We discussed several
methods of bootstrapping dependent data, and
developed a procedure based on pre-whitening
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ost-blackening to generate bootstrap sam-
f system identification data. The variability
sed-loop performance was then observed,
e saw a confirmation of the dangers asso-
with certain synthesis methods. Most im-

nt, the flexibility provided by this framework
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complicated problems.
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