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Affine Controller Parameterization for Decentralized
Control Over Banach Spaces

Michael Rotkowitz and Sanjay Lall

Abstract—We cast the problem of optimal decentralized control as one
of minimizing a closed-loop norm subject to a subspace constraint on the
controller. In this note, we consider continuous linear operators on Banach
spaces, and show that a simple property called quadratic invariance is nec-
essary and sufficient for the constraint set to be preserved under feedback,
and thus allows optimal synthesis to be recast as a convex optimization
problem. These results hold for any norm and any Banach space.

Index Terms—Banach spaces, bounded linear operators, convex opti-
mization, decentralized control, networked control, robust control.

I. INTRODUCTION

An important problem in control is that of constructing decentral-
ized control systems, where instead of a single controller connected
to a physical system, one has separate controllers, each with access to
different information and with authority over different decision or ac-
tuation variables. Examples of such systems include formation flight of
aircraft, the electricity distribution grid, and the control of smart struc-
tures. Standard controls analysis breaks down when one imposes de-
centralization on the controller.

There are many variations of this problem, depending on how the
limited availability of information is specified, the structure of the phys-
ical systems, and whether and how separate controllers can commu-
nicate. In a standard controls framework, or a two-input two-output
framework, the decentralization of the system manifests itself as struc-
tural constraints on the allowable controllers, such as sparsity or delay
constraints. Therefore a canonical problem one would like to solve in
decentralized control is to minimize a norm of the closed-loop map
subject to a subspace constraint as follows:

minimize kf(P;K)k

subject to K 2 S
:

For a general linear operator P and subspace S there is no known
tractable algorithm for computing the optimal K . It has been known
since 1968 [14] that even the simplest versions of this problem can be
extremely difficult. In fact, certain cases have been shown to be com-
putationally intractable [2], [7]. However, there are also several special
cases of this problem for which efficient algorithms have been found
[5], [8], [12], [13].

In this note, we show that if the constraints on the controller sat-
isfy a simple condition, called quadratic invariance, with respect to
the system being controlled, then the optimal decentralized control
problem may be reduced to a convex optimization problem. This con-
dition unifies previously identified tractable problems.

Manuscript received February 21, 2005; revised February 1, 2006. Recom-
mended by Associate Editor F. Bullo. The work of M. Rotkowitz was supported
in part by a Stanford Graduate Fellowship. The work of both authors was sup-
ported in part by the Stanford URI Architectures for Secure and Robust Dis-
tributed Infrastructures, Air Force Office of Scientific Research (AFOSR) DoD
Award 49620-01-1-0365.

M. Rotkowitz is with the Automatic Control Laboratory,
Royal Institute of Technology, SE-100 44 Stockholm, Sweden
(e-mail: rotkowitz@stanfordalumni.org).

S. Lall is with the Department of Aeronautics and Astronautics, Stanford Uni-
versity, Stanford, CA 94305-4035 USA (e-mail: lall@stanford.edu).

Digital Object Identifier 10.1109/TAC.2006.880781

Decentralized control has been addressed in many frameworks, with
much important early work coming from team theory [5]. The for-
mulation above provides a single framework for analyzing the decen-
tralized control of systems static and dynamic, finite-dimensional and
infinite-dimensional, stable and unstable, and elucidates why the same
information structures yield tractable optimization problems regardless
of the function spaces being considered. In [10] and [11], we consid-
ered causal linear time-invariant operators on extended linear spaces in
this framework.

In this note, we consider the case of continuous linear operators on
arbitrary Banach spaces, and show that quadratic invariance is neces-
sary and sufficient for the constraint set to be preserved under feedback,
provided that a technical condition is met. We then show that quadratic
invariance thus allows for convex synthesis of optimal decentralized
controllers. Finally, we provide an example which shows that, while
the technical conditions are usually trivially satisfied, the result can fail
if the technical conditions are not met.

A. Preliminaries

Given topological vector spaces X ;Y , let L(X ;Y) denote the set of
all maps T : X ! Y such that T is linear and continuous. Note that if
X ;Y are Banach spaces, then all such T are bounded. We abbreviate
L(X ;X ) with L(X ).

Suppose P 2 L(W � U ;Z � Y). Partition P as

P =
P11 P12

P21 P22

so that P11 : W!Z; P12 : U!Z; P21 :W!Y , and P22 : U!Y .
Suppose K 2 L(Y;U). If I � P22K is invertible, define f(P;K) 2
L(W;Z) by

f(P;K) = P11 + P12K(I � P22K)�1
P21:

The map f(P;K) is called the (lower) linear fractional transforma-
tion (LFT) of P and K ; we will also refer to this as the closed-loop
map. In the remainder of this note, we abbreviate our notation and de-
fine G = P22.

B. Bounded Linear Operators

In this note, we consider the case where U ;W;Y;Z are Banach
spaces and thus P is a bounded linear operator. We then introduce a
little more notation.

For S � X and T � X � define

S
? = fx� 2 X � j hx; x�i = 0; for all x 2 Sg

?
T = fx 2 X j hx; x�i = 0; for all x� 2 Tg

where X � is the dual-space to X .
Given G 2 L(U ;Y), we define the set M � L(Y;U) of controllers

K such that f(P;K) is well-defined by

M = fK 2 L(Y;U) j (I �GK) is invertibleg:

For any Banach space X and bounded linear operator A 2 L(X )
define the resolvent set �(A) by �(A) = f� 2 j (�I �
A) is invertibleg and the resolvent RA : �(A) ! L(X ) by
RA(�) = (�I � A)�1 for all � 2 �(A). We also define �uc(A) to be
the unbounded connected component of �(A).
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Note that 1 2 �(GK) for allK 2M , and define the subsetN �M

by

N = fK 2 L(Y;U) j 1 2 �uc(GK)g:

C. Problem Formulation

We can now formally state the problem we are to address in this note.
Given Banach spaces U ;W;Y;Z , generalized plant P 2 L(W �

U ;Z�Y), and a subspace of admissible controllers S � L(Y;U), we
would like to solve the following problem

minimize kf(P;K)k

subject to K 2M

K 2 S

: (1)

Here k�k is any norm on L(W;Z), chosen to encapsulate the con-
trol performance objectives, and S is chosen to represent the desired
decentralization of the controller. We call the subspace S the informa-
tion constraint.

This problem is very general, in the sense that the signal spaces
U ;W;Y;Z may be continuous-time, such asL2, or discrete-time, such
as `2, and the signals and systems may evolve over infinite time, with
U ;W;Y;Z function spaces over [0;1) or +, over finite time in-
tervals, or may be spatio-temporal. Also, the norm on L(W;Z) may
represent either a deterministic measure of performance, such as the
induced norm, or a stochastic measure of performance, such as theH2

norm.
In [10] and [11], we instead considered the case where U ;W;Y;Z

were extended spacesL2e or `e. The plant and controller were similarly
assumed to be linear and continuous, and were further assumed to be
causal and time-invariant. However, that did not restrict the plant and
controller to be bounded, as they are in this note. An important special
case was that where P 2 Rsp and S � Rp. For that case, we were
interested in the additional constraint that K be internally stabilizing.
In this note, our additional concern involves the existence of an inverse,
or K 2 M .

This problem is made substantially more difficult in general by the
constraint that K lie in the subspace S. Without this constraint, the
problem may be solved by a simple change of variables, as discussed
later. Note that the cost function kf(P;K)k is in general a non-convex
function of K . Even for finite-dimensional spaces U ;W;Y;Z , no
computationally tractable approach is known for solving this problem
for arbitrary P and S.

D. Change of Variables

We define the map h : L(U ;Y)� L(Y;U)! L(Y;U) by

h(G;K) = �K(I �GK)�1

for all G;K such that I �GK is invertible. We will also make use of
the notation hG(K) = h(G;K), which is then defined for allK 2M .
Given G 2 L(U ;Y), the map hG is an involution on M , as stated in
the following lemma.

Lemma 1: For any G 2 L(U ;Y), the map hG satisfies
image(hG) = M , and hG : M ! M is a bijection, with
hG � hG = I .

Proof: A straightforward calculation shows that for anyK 2M ,
hG(hG(K)) = K . It is then immediate that image(hG) = M and
hG � hG = I .

This lemma is very useful, since we have

f(P;K) = P11 � P12hG(K)P21:

Hence, we have the standard parametrization of all closed-loop maps
which are achievable by bounded controllers K . This parametrization
is related to the well-known internal model principle and Youla
parametrization of stabilizing controllers. Now, we can reformulate
(1) as the following equivalent optimization problem:

minimize kP11 � P12QP21k

subject to Q 2M

hG(Q) 2 S

: (2)

The closed-loop map is now affine in Q, and its norm is therefore
a convex function of Q. If not for the last constraint, that is, the in-
formation constraint S, we could solve this problem to find Q, and
then construct the optimal K for problem (1) via the transformation
K = hG(Q).

Note that while we are not considering all Q 2 L(Y;U), only those
Q 2 M , in many cases of practical interest M is dense in L(Y;U).
We will further discuss eliminating this constraint in Section III-A.

However, we see that the information constraint prevents this
problem from being easily solved. Specifically, the set

fQ 2M ; hG(Q) 2 Sg

is not convex in general. The main thrust of this note is to seek con-
ditions under which this last constraint may be converted to a convex
constraint.

II. QUADRATIC INVARIANCE

We now turn to the main focus of this note, which is characterizing
which constraint setsS are invariant under hG and thus lead to tractable
solutions for problem (1). In [9], a property called quadratic invariance
was introduced.

Definition 2: Suppose G 2 L(U ;Y), and S � L(Y;U). The set S
is called quadratically invariant under G if

KGK 2 S; for all K 2 S:

Note that, given G, we can define a quadratic map 	 : L(Y;U)!
L(Y;U) by 	(K) = KGK . Then a set S is quadratically invariant if
and only if S is an invariant set of 	; that is, 	(S) � S.

We give a general lemma about quadratically invariant subspaces.
Lemma 3: SupposeG 2 L(U ;Y), and S � L(Y;U) is a subspace.

If S is quadratically invariant under G, then

K(GK)n 2 S; for all K 2 S; n 2 +:

Proof: We prove this by induction. By assumption, given
K 2 S, we have that KGK 2 S. For the induction step, assume that
K(GK)n 2 S for some n 2 +. Then

2K(GK)n+1 = (K +K(GK)n)G(K +K(GK)n)

�KGK �K(GK)2n+1

and since all terms on the right-hand side of this equation are in S, we
have K(GK)n+1 2 S.
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Quadratic invariance is easy to verify for a given problem, and can
also be used to explicitly delineate which problems are amenable to
convex synthesis within a particular class. For a discussion of condi-
tions for quadratic invariance among specific constraint classes, such as
sparsity constraints, symmetric constraints, and delay constraints, see
[9] and [10].

III. INVARIANCE UNDER FEEDBACK

Before proving our main result, we state the following preliminary
lemmas regarding analyticity.

Lemma 4: SupposeD � is an open set,X is a Banach space, and
f : D ! X is analytic. Suppose that x 2 D, and f(y) = 0 for all y in
an open neighborhood of x. Then, f(y) = 0 for all y in the connected
component of D containing x.

Proof: See, for example, [3, Th. 3.7].
Lemma 5: Suppose X and Y are Banach spaces, D � is an open

set, andA : X ! Y is a bounded linear operator. Suppose q : D ! X
is analytic, and r : D ! Y is given by r = A � q. Then, r is analytic.

Proof: This is a straightforward consequence of the definitions.
Lemma 6: Suppose K 2 L(Y;U); G 2 L(U ;Y), and

� 2 L(Y;U)�. Define the function q� : �(GK)! by

q�(�) = hKRGK(�);�i:

Then, q� is analytic.
Proof: Define the linear map  : L(Y)! by

(G) = hKG;�i; for all G 2 L(Y):

Clearly  is bounded, since

k(G)k � kKk k�k kGk; for all G 2 L(Y):

Further q� =  �RGK , and the resolvent is analytic, hence by Lemma
V, we have that q� is analytic.

Main Result: The following is the main result of this note. It states
that given G, if a certain technical condition holds, then the constraint
set S is quadratically invariant if and only if the information constraints
on K are equivalent to the same affine constraints on the parameter
Q = hG(K). In other words, subject to technical conditions, quadratic
invariance is equivalent to invariance under feedback.

Theorem 7: Suppose G 2 L(U ;Y), and S � L(Y;U) is a closed
subspace. Further suppose N \ S = M \ S: Then

S is quadratically invariant under G () hG(S \M) = S \M:

Proof: (=)) SupposeK 2 S\M . We first show that hG(K) 2
S \M . For any � 2 S?, define the function q� : �(GK)! by

q�(�) = hK(�I �GK)�1;�i:

For any � such that j�j > kGKk, the Neumann series expansion for
RGK gives

K(�I �GK)�1 =

1

n=0

��(n+1)K(GK)n:

By Lemma 3, we have K(GK)n 2 S for all n 2 + and, hence,
K(�I �GK)�1 2 S since S is a closed subspace. Thus

q�(�) = 0; for all � such that j�j > kGKk:

By Lemma 6, the function q� is analytic, and since � 2 �uc(GK) for
all j�j > kGKk, by Lemma 4, we have

q�(�) = 0; for all � 2 �uc(GK):

It follows from K 2 N that 1 2 �uc(GK) and, therefore, q�(1) = 0.
Hence

hK(I �GK)�1;�i = 0; for all � 2 S?:

This implies

K(I �GK)�1 2 ?(S?):

SinceS is a closed subspace, we have?(S?) = S (see, for example,
[6, p. 118]) and, hence, we have shownK 2 S\M =) hG(K) 2 S.
Since h is a bijective involution on M , it follows that hG(S \M) =
S \M which was the desired result.
((=) We now turn to the converse of this result. Suppose S

is not quadratically invariant. Then, there exists K0 =2 S, such
that K0GK0 2 S. We will construct K 2 S \ M such that
hG(K) =2 S \ M . Without loss of generality we may assume
kK0k = 1. Choose � 2 S? with k�k = 1 such that

� = hK0GK0;�i 2 and � > 0

and choose � 2 such that

0 < � <
�

kGk(� + kGk)
:

Let K = �K0. Then kGKk < 1; K 2 S \M , and

hK(I �GK)�1;�i =

1

i=0

hK(GK)i;�i

where we have used the fact that the map  defined in Lemma 6 is
bounded. Hence

jhK(I �GK)�1;�ij =

1

i=0

hK(GK)i;�i

= �2� +

1

i=2

hK(GK)i;�i

� �2� � �

1

i=2

kGki�i

= �2
� � �kGk(� + kGk)

1� �kGk

> 0:

Hence, K(I �GK)�1 =2 S as required.
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There are many cases of interest where the technical condition above
is automatically satisfied, specifically any case where the plant is such
that the resolvent set of GK is always connected. This includes the
case where G is compact, such as for any problem where the Banach
spaces are finite dimensional, as shown in the following corollary.

Corollary 8: Suppose G 2 L(U ;Y) is compact and S � L(Y;U)
is a closed subspace. Then

S is quadratically invariant under G () hG(S \M) = S \M:

Proof: This follows since if G is compact then GK is compact
for any K 2 S and, hence, the spectrum of GK is countable, and so
N = M .

A. Equivalent Problems

When the conditions of Theorem 7 are met, we have the following
equivalent problem. K is optimal for problem (1) if and only if K =
hG(Q) and Q is optimal for

minimize kP11 � P12QP21k

subject to Q 2M

Q 2 S

: (3)

We then consider further reducing the problem to the following
convex optimization problem:

minimize kP11 � P12QP21k

subject to Q 2 S
: (4)

If the minimum to this problem did occur for someQ =2M , it would
mean that the original problem approaches its optimum as (I�GK)�1

blows up. Therefore, the constraint that Q 2 M is unnecessary when
the original problem is well-posed.

The solution procedure is then to solve problem (4) with convex
programming, and recover the optimal controller for the original
problem (1) as K = hG(Q).

B. Violation

The technical conditions of Theorem 7 are automatically satisfied in
many cases of interest, such as in Corollary 8. However, the conditions
cannot always be eradicated. We show an example where the resolvent
set is not connected, the technical conditions fail, and the main result
no longer holds. This is meant to elucidate that the conditions are not
merely for ease of proof, but that the result can actually fail in their
absence.

Consider the space of two-sided sequences

`2 = (. . . ; x
�1; x0; x1; . . .) xi 2 ;

1

i=�1

x2i <1 :

Define `+2 = fx 2 `2 j xi = 0; for all i < 0g and define the delay
operatorD : `2 ! `2 asD(x)i = xi�1. LetY = U = `2, let the plant
be the identity G = I , and let S be the subspace of causal controllers

S = fK 2 L(`2) jK(y) 2 `+2 ; for all y 2 `+2 g

such that S is clearly quadratically invariant under G. Now, consider
K = 2D 2 S; we have

(I �GK)�1 = �
1

2
D�1 I �

1

2
D�1

�1

= �

1

k=1

1

2k
D�k

and so K 2 M . Also, note that

�(GK) = f� 2 j j�j 6= 2g

and hence �uc(GK) = f� 2 j j�j > 2g, which implies thatK =2 N .
Finally

K(I �GK)�1 = �

1

k=0

1

2k
D�k =2 S:

So we have G 2 L(U ;Y); S � L(Y;U) is a closed subspace, and S
is quadratically invariant under G, but N \S 6= M \S. We have then
found a K 2 S \M such that hG(K) =2 S, and so hG(S \M) 6=
S \M .

This shows that the technical conditions of Theorem 7 cannot be
completely eradicated for arbitrary Banach spaces.

IV. CONCLUSION

We considered the problem of minimizing an arbitrary norm of a
linear-fractional transformation of bounded linear operators subject to
a subspace constraint on the controller. In Theorem 7, we showed that
a simple algebraic condition, quadratic invariance, is necessary and
sufficient for these affine constraints on the controller to be preserved
under the feedback map, provided that a technical condition is met. We
further showed that this allows for convex synthesis of optimal decen-
tralized controllers. An example was then provided showing how the
result can fail if the technical conditions are not met.
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