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A Characterization of Convex Problems in
Decentralized Control

Michael Rotkowitz and Sanjay Lall

Abstract—We consider the problem of constructing optimal
decentralized controllers. We formulate this problem as one of
minimizing the closed-loop norm of a feedback system subject
to constraints on the controller structure. We define the notion
of quadratic invariance of a constraint set with respect to a
system, and show that if the constraint set has this property,
then the constrained minimum-norm problem may be solved via
convex programming. We also show that quadratic invariance
is necessary and sufficient for the constraint set to be preserved
under feedback. These results are developed in a very general
framework, and are shown to hold in both continuous and discrete
time, for both stable and unstable systems, and for any norm. This
notion unifies many previous results identifying specific tractable
decentralized control problems, and delineates the largest known
class of convex problems in decentralized control. As an example,
we show that optimal stabilizing controllers may be efficiently
computed in the case where distributed controllers can commu-
nicate faster than their dynamics propagate. We also show that
symmetric synthesis is included in this classification, and provide
a test for sparsity constraints to be quadratically invariant, and
thus amenable to convex synthesis.

Index Terms—Convex optimization, decentralized control, de-
layed control, extended linear spaces, networked control.

I. INTRODUCTION

MUCH OF conventional controls analysis assumes that the
controllers to be designed all have access to the same

measurements. With the advent of complex systems, decentral-
ized control has become increasingly important, where one has
multiple controllers each with access to different information.
Examples of such systems include flocks of aerial vehicles, au-
tonomous automobiles on the freeway, the power distribution
grid, spacecraft moving in formation, and paper machining.

In a standard controls framework, the decentralization of the
system manifests itself as sparsity or delay constraints on the
controller to be designed. Therefore, a canonical problem one
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would like to solve in decentralized control is to minimize a
norm of the closed-loop map subject to a subspace constraint as
follows:

minimize

subject to stabilizes

For a general linear time-invariant plant and subspace there
is no known tractable algorithm for computing the optimal .
It has been known since 1968 [26] that even the simplest ver-
sions of this problem can be extremely difficult. In fact, cer-
tain cases have been shown to be intractable [3], [11]. How-
ever, there are also several special cases of this problem for
which efficient algorithms have been found [2], [6], [8], [12],
[22], [23]. This paper unifies these cases and identifies a simple
condition, which we call quadratic invariance, under which the
above problem may be recast as a convex optimization problem.
The notion of quadratic invariance allows us to better under-
stand this dichotomy between tractable and intractable optimal
decentralized control problems. It further delineates the largest
known class of decentralized problems for which optimal con-
trollers may be efficiently synthesized.

Quadratic invariance is a simple algebraic condition relating
the plant and the constraint set. The main results of this paper
hold for continuous-time or discrete-time systems, for stable or
unstable plants, and for the minimization of any norm.

In Section II, we define quadratic invariance, and present
some of its characteristics. In Section III, we show that quadratic
invariance is necessary and sufficient for the constraint set to
be invariant under a linear fractional transformation (LFT),
namely, the map from to . This allows for
convex synthesis of optimal controllers when the plant is stable.
In Section IV, we show that for possibly unstable plants, as long
as a controller exists which is both stable and stabilizing, this
invariance implies that the information constraint is equivalent
to affine constraints on the Youla parameter. Thus synthesizing
optimal stabilizing controllers subject to quadratically invariant
constraints is a convex optimization problem.

In Section V, we apply these results to specific constraint
classes. We first consider a distributed control problem, and find
that optimizing the closed-loop norm may be formulated as a
convex optimization problem when the controllers can commu-
nicate faster than the dynamics propagate. We further show that
this result still holds in the presence of computational delay.

We show that optimal synthesis of a symmetric controller
for a symmetric plant is also quadratically invariant and thus
amenable to convex synthesis. This is important because this
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problem, while formerly known to be solvable, defied other ef-
forts to classify tractable problems. We develop an explicit test
for the quadratic invariance of sparsity constraints, and thus
show that optimal synthesis subject to such constraints which
pass the test may be cast as a convex optimization problem. As a
consequence of the test, we show that block diagonal constraints
are never quadratically invariant unless the plant is block diag-
onal as well.

These results all hold for the minimization of an arbitrary
norm. In Section VI we show that if the norm of interest is the

-norm, then the constrained convex optimization problem
derived in Section IV may be further reduced to an uncon-
strained convex optimization problem, and then readily solved.
We then provide a numerical example.

A. Prior Work

Decentralized control has been studied from many perspec-
tives over the past half century, and there have been many
striking results which illustrate the complexity of this problem.
Important early work includes that of Radner [13], who de-
veloped sufficient conditions under which minimal quadratic
cost for a linear system is achieved by a linear controller. An
important example was presented in 1968 by Witsenhausen
[26] where it was shown that for quadratic stochastic optimal
control of a linear system, subject to a decentralized informa-
tion constraint called nonclassical information, a nonlinear
controller can achieve greater performance than any linear
controller. An additional consequence of the work of [10], [26]
is to show that under such a nonclassical information pattern
the cost function is no longer convex in the controller variables,
a fact which today has increasing importance.

With the difficulty of the general problem elucidated and the
myth of ubiquitous linear optimality refuted, efforts followed
to classify when linear controllers were indeed optimal, to
discern when finding the optimal linear controller could be
cast as a convex optimization problem, and to understand the
complexity of decentralized control problems. In a later paper
[27], Witsenhausen summarized several important results on
decentralized control at that time, and gave sufficient condi-
tions under which the problem could be reformulated so that
the standard linear quadratic Gaussian (LQG) theory could
be applied. Under these conditions, an optimal decentralized
controller for a linear system could be chosen to be linear. Ho
and Chu [8], in the framework of team theory, defined a more
general class of information structures, called partially nested,
for which they showed the optimal LQG controller to be linear.
Roughly speaking, a plant-controller system is called partially
nested if whenever the information of controller is affected
by the decision of a controller , then has access to all of
the information that has.

The study of the computational complexity of decentralized
control problems has shown certain problems to be intractable.
Blondel and Tsitsiklis [3] showed that the problem of finding a
stabilizing decentralized static output feedback is NP-complete.
This is also the case for a discrete variant of Witsenhausen’s
counterexample [11].

For particular information structures, the controller optimiza-
tion problem may have a tractable solution, and in particular, it
was shown by Voulgaris [22] that the so-called one-step delay
information sharing pattern problem has this property. In [6],
the LEQG problem is solved in for this information pattern,
and in [22] the , and control synthesis problems are
solved. A class of structured spatio-temporal systems has also
been analyzed in [2], and shown to be reducible to a convex
program. Several information structures are identified in [12]
for which the problem of minimizing multiple objectives is re-
duced to a finite-dimensional convex optimization problem.

In this paper , we define a property called quadratic invari-
ance, show that it is necessary and sufficient for the constraint
set to be preserved under feedback, and that this allows op-
timal stabilizing decentralized controllers to be synthesized via
convex programming. The tractable structures of [2], [6], [8],
[12], [22], [23], and [27] can all be shown to satisfy this prop-
erty.

B. Preliminaries

Given topological vector spaces , let denote the
set of all maps such that is linear and continuous.
Note that if are normed spaces, as in Lemma 12, then all
such are bounded, but that may be unbounded in general.
We abbreviate with .

Suppose . Partition as

so that and
. Suppose . If is invertible,

define by

The map is called the (lower) linear fractional trans-
formation (LFT) of and ; we will also refer to this as the
closed-loop map. In the remainder of the paper, we abbreviate
our notation and define .

Given a linear vector space , let denote the dual-space
of , let denote the dual pairing of any and

, and define

for all

Kronecker Products: Given and let
denote the Kronecker product of and .

Given , we may write in term of its columns as

and then associate a vector defined by

...

Lemma 1: Let . Then

Proof: See, for example, [9].



276 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 2, FEBRUARY 2006

Transfer Functions: We use the following standard notation.
Denote the imaginary axis by

and the closed right half of the complex plane by

We define transfer functions for continuous-time systems there-
fore determined on , but we could also define transfer func-
tions for discrete-time systems determined on the unit circle. A
rational function is called real-rational if the coef-
ficients of its numerator and denominator polynomials are real.
Similarly, a matrix-valued function is called
real-rational if is real-rational for all . It is called proper
if

exists and is finite

and it is called strictly proper if

Denote by the set of matrix-valued real-rational proper
transfer matrices

proper real-rational

and let be

strictly proper

Also, let be the set of real-rational proper stable transfer
matrices

has no poles in

It can be shown that functions in are determined by their
values on , and thus we can regard as a subspace of

. If we say is invertible if is an
invertible matrix and is invertible for almost all .
Note that this is different from the definition of invertibility for
the associated multiplication operator on . If is invertible
we write if for almost all .
Note that, if then is invertible for all

, which will be consistent with the definition of
invertibility for operators on extended spaces.

Topology: Let be a vector space and be a
family of seminorms on . The family is called sufficient if for
all such that there exists such that

. The topology generated by all open -balls is called the
topology generated by the family of seminorms. Convergence in
this topology is equivalent to convergence in every seminorm,
and continuity of a linear operator is equivalent to continuity in
every seminorm. See, for example, [20] and [31].

Extended Spaces: We introduce some new notation for ex-
tended linear spaces. These spaces are utilized extensively in
[5] and [25].

We define the truncation operator for all on all
functions such that is given by

if
if

and, hereafter, abbreviate as . We make use of the stan-
dard Banach spaces equipped with the usual -norm, and the
extended spaces

for all

for all

We let the topology on be generated by the suf-
ficient family of seminorms where

, and let the topology on be gen-
erated by the sufficient family of seminorms
where .

We use similar notation for discrete time. As is standard, we
extend the discrete-time Banach spaces to the extended space

for all

Note that in discrete time, all extended spaces contain the same
elements, since the common requirement is that the sequence is
finite at any finite index. This motivates the abbreviated notation
of .

We let the topology on be generated by the sufficient family
of seminorms where ,
and let the topology on be generated by the
sufficient family of seminorms where

.
When the dimensions are implied by context, we omit the

superscripts of . We will
indicate the restriction of an operator to or by

, and the restriction and truncation of an operator as
. Thus, for every seminorm in this paper, one may write

. Given a set of operators , we also denote
.

C. Problem Formulation

Suppose is a subspace. Given
, we would like to solve the following

problem:

minimize

subject to stabilizes

(1)

Here, is any norm on , chosen to encapsulate the
control performance objectives, and is a subspace of admis-
sible controllers which encapsulates the decentralized nature of
the system. The norm on may be either a determin-
istic measure of performance, such as the induced norm, or a
stochastic measure of performance, such as the norm. Many
decentralized control problems may be formulated in this form,
and some examples are shown below. We call the subspace
the information constraint.

This problem is made substantially more difficult in general
by the constraint that lie in the subspace . Without this
constraint, the problem may be solved by a simple change of
variables, as discussed in Section IV-B. For specific norms, the
problem may also be solved using a state–space approach. Note
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that the cost function is in general a nonconvex func-
tion of . No computationally tractable approach is known for
solving this problem for arbitrary and .

II. QUADRATIC INVARIANCE

We now turn to the main focus of this paper, which is the char-
acterization of constraint sets that lead to tractable solutions
for problem (1).

Definition 2: Suppose , and . The
set is called quadratically invariant under if

for all

Note that, given , we can define a quadratic map
by . Then a set

is quadratically invariant if and only if is an invariant set
of ; that is .

Definition 3: Given a constraint set , we define
a complementary set by

is quadratically invariant under

Theorem 4: If is a subspace, is quadratically invariant
under for all .

Proof: Suppose and . First note that

and since all terms on the right hand side of this equation are in
, we have . Then, we have

and since all terms on the right-hand side of this equation are in
, we have for all and for all

. This implies for all and for all
, and the desired result follows.

This tells us that the complementary set is quadratically in-
variant under any element of the constraint set, which will be
very useful in proving the main result of Section IV.

We give another general lemma on quadratic invariance
which will be useful throughout the remainder of this paper.

Lemma 5: Suppose , and is a
subspace. If is quadratically invariant under , then

for all

Proof: We prove this by induction. By assumption, given
, we have that . For the induction step, assume

that for some . Then

and since all terms on the right-hand side of this equation are in
, we have .

III. INVARIANCE UNDER FEEDBACK

In this section, we focus on time-invariant causal operators
and show that quadratic invariance is necessary and sufficient
for the constraint set to be invariant under a linear fractional
transformation, namely, the map from to .

We define the map by

for all such that is invertible. We will also make
use of the notation , which is then defined
for all such that is invertible. Given

, we note that is an involution on this set, as a
straightforward calculation shows that .

From Lemma 5, we see that if we could express
as , then this mapping

would lie in for all , provided that was a closed
subspace. Noting that can be pulled outside of the sum due to
continuity, we thus seek conditions under which
converges. We would like to be able to utilize this expansion
not just for small , as in the small gain theorem, but for
arbitrarily large as well. We consider the plant and controller
as operators on extended spaces both because that will allow
us to achieve this, and also so that unstable operators may be
considered.

In Section III-A, we develop conditions under which this
Neumann series is guaranteed to converge in the topologies
defined in Section I-B. These topologies were first utilized in
[17]. We then prove in Section III-B that under very broad
assumptions quadratic invariance in necessary and sufficient
for the constraint set to be preserved under feedback. These
conditions include, but are not limited to, the case we are often
interested in where and .

A. Convergence of Neumann Series

We first analyze convergence of the Neumann series

where is a general causal linear operator on extended spaces.
Note that while most of the results in this paper have analogs
in both continuous-time and discrete-time, the proofs in these
cases are different. We first analyze the continuous-time case,
and begin by providing a preliminary lemma which states that if
a sequence of impulse responses converge in a particular sense,
then their associated operators do as well.

Lemma 6: Suppose is causal and time-in-
variant for all is the impulse response
of and converges uniformly to as

for all . Then converges to ,
where is given by .

Proof: Given and
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since and for . Hence, ,
since and , by [21, Th. 65]. Therefore, we can
define by .

For any and any

and hence

Since converges uniformly to , for any we
can choose such that for all and for all

for all
and, thus, . So converges to in .

We can now prove convergence of the Neumann series under
the given conditions by showing the convergence of impulse
responses. The method for showing this is similar to that used
for spatio-temporal systems in [2, App.].

Theorem 7: Suppose is causal and time-in-
variant with impulse response matrix such that .
Then converges to an element such
that .

Proof: Let for all
, and let be the impulse response matrix of . First we

claim that for all integers
. This is true immediately for . For the inductive

step

Then for all
, for all , and for all .

converges to ,
so by the Weierstrass M-test, converges uni-
formly and absolutely for all .

Let . Then for all
, and we can define by and

.

Then, by Lemma 6, converges to in , and
thus converges to in .

Finally,

A simple example of the utility of this result is as follows.
Consider represented by the transfer function .
Then, is not invertible in .
However, using the previous theorem, the inverse in is
given by .

We now move on to analyze the discrete-time case. Let
denote spectral radius.

Theorem 8: Suppose is causal and time-in-
variant with impulse response matrix such that and

. Then converges to an element
such that .

Proof: We may represent with the block lower
triangular Toeplitz matrix

. . .
...

Since . Then, ,
which implies that converges in . Thus
we can define by
for any and any . It is then immediate that

as for all , and thus
converges to in .

Finally,

Note that while the conditions of Theorem 8 are necessary for
convergence as well as sufficient, the conditions of Theorem 7
are not.

In particular, the aforementioned results imply the following
corollaries, which show convergence of the Neumann series for
strictly proper systems, possibly with delay.

Corollary 9: Suppose is given by
where and . Then, con-

verges to an element such that .
Corollary 10: Suppose is given by .

Then, converges to an element such that
.

B. LFT Invariance

This subsection contains the main technical results of this
paper. In particular, we show that for a broad class of systems,
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quadratic invariance is necessary and sufficient for the informa-
tion constraint to be invariant under an important LFT.

We first state two lemmas which will help with the converse
of our main result.

Lemma 11: Suppose or ,
and . Then there exists such that .

Proof: Suppose not. Then for every positive .
Thus for every , there exists such that

, or . Since only if
for all , it follows that there exists such that

for all . However, then , and so
and we have a contradiction.

Lemma 12: Suppose are Banach spaces,
is a closed subspace, and is not

quadratically invariant under . Then there exists such
that is invertible and .

Proof: There exists such that . We
will construct such that . Without loss of
generality we may assume . Choose with

such that

and

and choose such that

Let . Then , and

Thus

Hence, as required.
We define a broad class of sets of controllers for which the

closed-loop map will always be well-defined. Note that this in-
cludes the case which is often of interest where and

.
Definition 13: We say that is inert with

respect to if for all for all
where is the impulse response matrix of .

We overload our notation and also define to
be inert if for all for all and

where is the discrete impulse response
matrix of .

Main Result 1: The following theorem is the main result of
this section. It states that quadratic invariance of the constraint
set is necessary and sufficient for the set to be invariant under
the LFT defined by .

Theorem 14: Suppose or
, and is an inert closed subspace. Then

is quadratically invariant under

Proof: Suppose . We first show that .

where the first equality follows from Theorems 7 and 8 and the
second follows from the continuity of .

By Lemma 5, we have for all , and
hence since is a closed subspace.

So . Thus , and since
is involutive it follows that , which was the desired
result.

We now turn to the converse of this result. Suppose that
is not quadratically invariant under . Then there exists
such that , and thus by Lemma 11, there exists a

finite such that . Since and are causal,
we then have

where

and

and, thus, is not quadratically invariant under . Then, by
Lemma 12, there exists such that

By definition of , there exists such that
. Then, by causality of and

and, thus, .

IV. OPTIMAL STABILIZING CONTROLLERS

In this section, we address the problem posed in Section I-C;
finding optimal stabilizing controllers subject to an information
constraint. These results apply both to continuous-time and dis-
crete-time systems. Note that throughout this section, the con-
straint set is always inert, since and .

There have been several key results regarding controller
parameterization and optimization which we will extend for
decentralized control, relying heavily on our result from the
previous section. The celebrated Youla parameterization [29]
showed that given a coprime factorization of the plant, one may
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Fig. 1. Linear fractional interconnection of P and K .

parameterize all stabilizing controllers. The set of closed-loop
maps achievable with stabilizing controllers is then affine in
this parameter, an important result which converts the problem
of finding the optimal stabilizing controller to a convex opti-
mization problem, given the factorization. Zames proposed a
two-step compensation scheme [30] for strongly stabilizable
plants, that is, plants which can be stabilized with a stable com-
pensator. In the first step, one finds any controller which is both
stable and stabilizing, and in the second one optimizes over a
parameterized family of systems. This idea has been extended
to nonlinear control [1], and in this section we show that it may
be extended to decentralized control when the constraint set is
quadratically invariant, as first shown in [16].

Our approach starts with a single decentralized controller
which is both stable and stabilizing, and uses it to parameterize
all stabilizing decentralized controllers. The resulting parame-
terization expresses the closed-loop system as an affine function
of a stable parameter, allowing the next step, optimization of
closed-loop performance, to be achieved with convex program-
ming. Techniques for finding an initial stabilizing controller
for decentralized systems are discussed in detail in [19], and
conditions for decentralized stabilizability were developed in
[24].

A. Stabilization

We say that stabilizes if in Fig. 1 the nine transfer ma-
trices from to belong to . We say that
stabilizes if in the figure the four transfer matrices from
to belong to . is called stabilizable if there exists

such that stabilizes , and it is called is called
strongly stabilizable if there exists such that

stabilizes . We denote by the set of con-
trollers which stabilize . The following standard
result relates stabilization of with stabilization of .

Theorem 15: Suppose and
, and suppose is stabiliz-

able. Then, stabilizes if and only if stabilizes .
Proof: See, for example, [7, Ch. 4].

B. Parameterization of Stabilizing Controllers

In this section, we review one well-known approach to so-
lution of the feedback optimization problem (1) when the con-

straint that lie in is not present. In this case, one may use
the following standard change of variables.

For a given system , all controllers that stabilize the system
may be parameterized using the well-known Youla parameteri-
zation [29], stated below.

Theorem 16: Suppose we have a doubly coprime factoriza-
tion of over , that is,

such that and

Then the set of all controllers in which stabilize is

is invertible

Furthermore, the set of all closed-loop maps achievable with
stabilizing controllers is

stabilizes

is invertible (2)

where are given by

Proof: See, for example, [7, Ch. 4].
This parameterization is particularly simple to construct in

the case where we have a nominal stabilizing controller
; that is, a controller that is both stable and stabilizing.

Theorem 17: Suppose is strictly proper, and
. Then, all stabilizing controllers are given by

and all closed-loop maps are given by (2) where

(3)

Proof: A doubly coprime factorization for over
is given by

Then
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so all stabilizing controllers are given by

The invertibility condition is met since , and thus , is strictly
proper.

This theorem tells us that if the plant is strongly stabilizable,
that is, it can be stabilized by a stable controller, then given such
a controller, we can parameterize the set of all stabilizing con-
trollers. See [30] for a discussion of this, and [1] for an extension
to nonlinear control. The parameterization above is very useful,
since in the absence of the constraint , problem (1) can
be reformulated as

minimize

subject to (4)

The closed-loop map is now affine in , and its norm is therefore
a convex function of . This problem is readily solvable by, for
example, the techniques in [4]. After solving this problem to
find , one may then construct the optimal for problem (1)
via .

C. Parameterization of Admissible Controllers

We now wish to extend the above result to parameterize all
stabilizing controllers that also satisfy the information
constraint . Applying the above change of variables to
problem (1), we arrive at the following optimization problem:

minimize

subject to

(5)

However, the set of all which satisfy this last constraint is
not convex in general, and hence this problem is not easily
solved. We thus develop conditions under which this set is in
fact convex, so that the optimization problem (5) may be solved
via convex programming. First, we state a preliminary lemma.

Lemma 18: Suppose is a closed sub-
space, and . Then is quadratically
invariant under if and only if

Proof: Suppose is quadratically invariant under
, and further suppose there exists such that

Since is quadratically invariant under and is an
inert subspace, Theorem 14 implies that

, and since as well, .
Now, suppose . Let

We know , and since is quadratically in-
variant under , then by Theorem 14, we also have

. Now suppose is not quadratically invariant
under . Then, by Theorem 14, there exists
such that , and thus

.
This lemma shows that if we can find a stable

which is stabilizing, and if the condition that is quadrati-
cally invariant under holds, then the set of all sta-
bilizing admissible controllers can be easily parameterized with
the same change of variables from Theorem 17. We now sim-
plify this condition.

Main Result 2: The following theorem is the main result of
this section. It states that if the constraint set is quadratically
invariant under the plant, then the information constraints on
are equivalent to affine constraints on the Youla parameter .
Specifically, the constraint is equivalent to the constraint

.
Theorem 19: Suppose is a closed sub-

space, and . If is quadratically
invariant under then

Proof: If is quadratically invariant under , then
. Further, by Theorem 4, is quadratically invariant under

, and then by Theorem 14, we have .
We then have and, therefore, is quadrat-
ically invariant under . By Lemma 18, this yields
the desired result.

Remark 20: When is stable, we can choose and
the result reduces to that analyzed in [15].

Remark 21: When , which corresponds to cen-
tralized control, then the quadratic invariance condition is met
and the result reduces to Theorem 17.

D. Equivalent Convex Problem

When the constraint set is quadratically invariant under the
plant, we now have the following equivalent problem. Suppose

and is a closed subspace. Then
is optimal for problem (1) if and only if

and is optimal for

minimize

subject to

(6)

where are given by (3). This problem may
be solved via convex programming.

V. SPECIFIC CONSTRAINT CLASSES

In this section, we apply these results to specific constraint
classes. Armed with our findings on quadratic invariance, many
useful results easily follow. In Section V-A, we consider a dis-
tributed control problem, and show that if the controllers can
communicate faster than the dynamics propagate, then norm-
optimal controllers may be found via convex programming. In
Section V-B, we show that symmetric synthesis is quadratically
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Fig. 2. Distributed control problem.

invariant, and thus convex. In Section V-C, we consider spar-
sity constraints. We develop a computational test for quadratic
invariance of sparsity constraints, and easily show that norm
minimization subject to such constraints which pass the test is a
convex optimization problem. We also see an interesting nega-
tive result, that perfectly decentralized control is never quadrat-
ically invariant.

A. Distributed Control With Delays

We now consider the distributed control problem shown in
Fig. 2. Suppose there are subsystems with transmission delay

, propagation delay and computational delay .
When expressed in linear-fractional form, we define the allow-
able set of controllers as follows. Let be the delay operator
on or . Then, if and only if

...
...

for some of appropriate spatial dimensions. The cor-
responding system is given by

...
...

for some .
We define Delay to give the delay associated with a time-

invariant causal operator

Delay

where is the impulse response of

Theorem 22: Suppose that and are defined as above, and
. Then, if

we have

Proof: Given

Delay

for all

We now seek conditions which cause this to hold

and so, assuming w.l.o.g. that

Delay

Delay Delay Delay

So, the condition for quadratic invariance is

for all

This is equivalent to , which is
equivalent to . So when this inequality holds,
is quadratically invariant under , and the desired result follows
from Theorem 19.

Thus, we see that finding the minimum-norm controller may
be reduced to the convex optimization problem (6) when the
controllers can transmit information faster than the dynamics
propagate; that is, when . We also see that the presence
of computational delay causes this condition to be surprisingly
relaxed. This result has been generalized considerably [14].

B. Symmetric Constraints

The following shows that when the plant is symmetric, the
methods introduced in this paper could be used to find the op-
timal symmetric stabilizing controller. Symmetric synthesis is
a well-studied problem, and there are many techniques which
exploit its structure. Therefore, the methods in this paper are
possibly not the most efficient. However, it is important to note
the quadratic invariance of this structure because it defied ear-
lier attempts to classify solvable problems. This arises because
a symmetric matrix multiplied by another, i.e., , is not guar-
anteed to yield a symmetric matrix, but a symmetric matrix left
and right multiplied by the same symmetric matrix, i.e., ,
will indeed.

Theorem 23: Suppose

and

for almost all
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Further suppose and with
for almost all . Then

Proof: Follows immediately from Theorem 19.

C. Sparsity Constraints

Many problems in decentralized control can be expressed in
the form of problem (1), where is the set of controllers that
satisfy a specified sparsity constraint. In this section, we provide
a computational test for quadratic invariance when the subspace

is defined by block sparsity constraints. First, we introduce
some notation.

Suppose is a binary matrix. We define the
subspace

Sparse for all

such that for almost all

Also, if , let Pattern be the binary matrix
given by

if for almost all
otherwise

Note that in this section, we assume that matrices of transfer
functions are indexed by blocks, so that above, the dimensions
of may be much smaller than those of . Then, de-
termines whether controller may use measurements from sub-
system is the map from the outputs of subsystem to the
inputs of subsystem , and represents the map from the in-
puts to subsystem to the outputs of subsystem .

We seek an explicit test for quadratic invariance of a con-
straint set defined by such a binary matrix. We first prove two
preliminary lemmas.

Lemma 24: Suppose Sparse , and let
Pattern . If is quadratically invariant under , then

or for all and

such that

Proof: Suppose there exists and such that

but

and

Then, we must have

Consider such that

if

Then

Since , we can easily choose and such that
. So and is not quadratically

invariant.
Lemma 25: Suppose Sparse , and let

Pattern . If

or for all and

such that

Then

for all

such that

Proof: We show this by contradiction. Suppose there ex-
ists such that

Then

and, hence, it must follow that there exists such that
and .

The following is the main result of this section. It provides
a computational test for quadratic invariance when is defined
by sparsity constraints. It also equates quadratic invariance with
a stronger condition.

Theorem 26: Suppose Sparse , and let
Pattern . Then, the following are equivalent:

i) is quadratically invariant under ;
ii) for all ;
iii) for all

and .
Proof: We will show that i) iii) ii) i). Suppose

is quadratically invariant under . Then, by Lemma 24

or for all and

such that

and by Lemma 25

for all

such that

which can be restated

and which implies that

or for all

such that

which clearly implies

for all such that
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Fig. 3. Perfectly decentralized control.

and thus

for all

which is a stronger condition than quadratic invariance and
hence implies i).

This result shows us several things about sparsity constraints.
In this case, quadratic invariance is equivalent to another con-
dition which is stronger in general. When is symmetric, for
example, the subspace consisting of symmetric is quadrati-
cally invariant but does not satisfy condition ii). Condition iii),
which gives us the computational test we desired, shows that
quadratic invariance can be checked in time , where

. It also shows that, if is defined by sparsity con-
straints, then is quadratically invariant under if and only if it
is quadratically invariant under all systems with the same spar-
sity pattern.

Perfectly Decentralized Control: We now show an inter-
esting negative result. Let , so that each subsystem has
its own controller as in Fig. 3.

Corollary 27: Suppose there exists , with , such that
. Suppose is diagonal and Sparse .

Then, is not quadratically invariant under .
Proof: Let Pattern . Then

The result then follows from Theorem 26.
It is important to note that the plant and controller do not have

to be square to apply this result because of the block notation
used in this section. This corollary tells us that if each subsystem
has its own controller which may only use sensor information
from its own subsystem, and any subsystem affects any other,
then the system is not quadratically invariant. In other words,
perfectly decentralized control is never quadratically invariant
except for the trivial case where no subsystem affects any other.

Sparse Synthesis: The following theorem shows that for
sparsity constraints, the test in Section V-C can be used to
identify tractable decentralized control problems.

Theorem 28: Suppose and
. Further, suppose Pattern and

Sparse for some . If

for all and

then

Proof: Follows immediately from Theorems 19 and 26.

VI. COMPUTATION OF OPTIMAL CONTROLLERS

We show in this section that if we wish to minimize the
-norm, then we can convert (6) to an unconstrained problem

which may be readily solved. We focus on sparsity constraints,
as in [18], but the vectorization techniques in this section are
easily applied to the other constraint classes of Section V as
well. A similar method was used for symmetric constraints in
[28].

For ease of presentation, we now make a slight change of no-
tation from Section V-C. We no longer assume that the plant
and controller are divided into blocks, so that now deter-
mines whether the index of the controller may be nonzero,
rather than determining whether controller may use informa-
tion from subsystem , and similarly represents the index
of the plant. therefore has the same dimension as the con-
troller itself. and represent the total number of inputs and
outputs, respectively.

Let

such that represents the number of admissible controls, that
is, the number of indexes for which is not constrained to be
zero.

The following theorem gives the equivalent unconstrained
problem.

Theorem 29: Suppose is an optimal solution to

minimize

subject to (7)

where is a matrix whose columns form an or-
thonormal basis for , and

Then, is optimal for (6) and the optimal values
are equivalent.

Proof: We know that

for some

Since

by definition of the norm

by Lemma 1

we have the desired result.
Therefore, we can find the optimal for problem (7) using

many available tools for unconstrained -synthesis, with

then find the optimal for problem (6) as ,
and finally, find the optimal for problem (1) as

.
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A. Numerical Example

Consider an unstable lower triangular plant

with given by

and a sequence of sparsity constraints

defining a sequence of information constraints

Sparse

such that each subsequent constraint is less restrictive, and such
that each is quadratically invariant under . We also use
as the set of controllers with no sparsity constraints, i.e., the
centralized case. A stable and stabilizing controller which lies
in the subspace defined by any of these sparsity constraints is
given by

Fig. 4. Optimal norm with information constraints.

We can then find as in (3), and then find the stabi-
lizing controller which minimizes the closed-loop norm subject
to the sparsity constraints by solving problem (7), as outlined in
Section VI. The graph in Fig. 4 shows the resulting minimum

norms for the six sparsity constraints as well as for a cen-
tralized controller.

VII. CONCLUSION

We defined the notion of quadratic invariance of a constraint
set with respect to a plant. We showed in Theorem 14 that
quadratic invariance is necessary and sufficient for the con-
straint set to be preserved under feedback. In Theorem 19, we
then proved that quadratic invariance allows us to choose a
controller parameterization such that the information constraint
is equivalent to an affine constraint on the Youla parameter.
Thus synthesizing optimal decentralized controllers becomes a
convex optimization problem.

We then applied this to some specific constraint classes. We
showed that for distributed systems with delays, optimal con-
trollers may be synthesized in this manner if the communica-
tion delay is less than the propagation delay. We then noted that
symmetric synthesis is included in this classification. We also
provided a test for sparsity constraints to be quadratically in-
variant, and thus amenable to convex synthesis.

We thus characterized a broad and useful class of tractable
decentralized control problems, and unified many previous re-
sults regarding specific structures.
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