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Abstract—An iterative algorithm to solve Algebraic Riccati
Equations with an indefinite quadratic term is proposed. The
global convergence and local quadratic rate of convergence of the
algorithm are guaranteed and a proof is given. Numerical exam-
ples are also provided to demonstrate the superior effectiveness
of the proposed algorithm when compared with methods based
on finding stable invariant subspaces of Hamiltonian matrices. A
game theoretic interpretation of the algorithm is also provided.

Index Terms—Algebraic Riccati equation (ARE), Riccati
equations, indefinite quadratic term, iterative algorithms.

I. INTRODUCTION

C ONSIDER the following Algebraic Riccati Equation
(ARE) in the variable :

(1)

where are real matrices with and symmetric.
Here, denotes the transpose of . Associated with this
Riccati equation is a Hamiltonian matrix

Generally speaking, existing methods to solve AREs can be
divided into two categories:

1) Direct: solutions of ARE (1) can be constructed via com-
putation of an n-dimensional invariant subspace of Hamil-
tonian matrix (for example using the Schur algorithm in
[5]).

2) Iterative: a sequence of matrices which converge to the
unique stabilizing solution of special classes of ARE (1)
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are constructed (for example using the Kleinman algorithm
in [2]).

Several different direct methods to solve ARE (1) are given
in [1], [5], [21], [22], [24], [31]–[33], [36]. However, compared
with iterative methods to solve ARE (1), direct methods present
computational disadvantages in some situations. For example,
in example 6 in [5], the solution to an -type ARE obtained
by the Schur algorithm in [5] is inaccurate but the iterative so-
lution obtained by the Kleinman algorithm in [2] is accurate to
13 digits in just 2 iterations. The reason for the failure of using
the Schur algorithm in solving AREs is that the structure of
the Hamiltonian matrix cannot be preserved in general during
computation. There are some direct methods such as symplectic
methods, e.g., the multishift algorithm (see [21], [35]), which
can preserve the structure of the Hamiltonian matrix during ma-
trix transformation and hence yield more reliable solutions of
AREs. However, most structure-preserving direct methods will
typically require more computational cost and hence they are
not frequently used in practice, and appear not to be incorpo-
rated into standard package.

Traditionally, in control, one needs to solve AREs with
and . In control, one needs to solve AREs with

positive semidefinite and sign indefinite . In this paper, we
only focus on developing an iterative algorithm to solve AREs
arising in control. Although the Kleinman algorithm in [2]
has been shown to have many advantages such as convergence
for any suitable initial condition, and a local quadratic rate of
convergence [2], these advantages are strictly restricted to AREs
arising in control where in (1) must be negative semidef-
inite. It is not difficult to adjust the Kleinman method (which is
an effective Newton’s method) to also handle the separate case
where , but still sign-indefinite cannot be handled. So
the question naturally arises: “Can one extend the Kleinman al-
gorithm in [2] to solve AREs with a sign indefinite quadratic
term, as those that arise in control?” The answer is that an
iterative algorithm with very simple initialization to solve such
a class of AREs will be given in this paper, but the algorithm is
not obtained by simply permitting indefinite to occur in the
Kleinman algorithm (see Example 3 in Section VII for a demon-
stration of this)—a different route has to be selected.

In the Kleinman algorithm, when a suitable initial condition
is chosen and some necessary assumptions hold, it is proved that
a series of Lyapunov equations can be recursively constructed at
each iteration and positive semidefinite solutions of these Lya-
punov equations converge to the stabilizing solution of the cor-
responding -type ARE. In our proposed algorithm, an ARE
with a sign indefinite quadratic term is replaced by a sequence of
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-type AREs (each of which could be solved by the Kleinman
algorithm if desired, though this need not happen), and the so-
lution of the original ARE with a sign indefinite quadratic term
is obtained by recursively solving these -type AREs.

In control, typically, the Kleinman algorithm for solving
-type AREs with a negative semidefinite quadratic term is

well suited as a “second iterative stage” refinement to achieve
the limiting accuracy for the stabilizing solution of the ARE. For
example, if an approximate solution is known (e.g., using the
Schur method), and this is stabilizing, then 1–2 iterations are suf-
ficient to achieve the limiting accuracy (because of the guaran-
teed final quadratic rate of convergence of a typical Newton algo-
rithm).Nowasnoted, theKleinmanalgorithmreducesaquadratic
(Riccati) equation (with a negative semidefinite quadratic term)
to several successive iterations of linear (Lyapunov) equations;
the complexity of solving algebraic Lyapunov and Riccati equa-
tions with sound numerical methods (e.g., Schur form based re-
ductions) is for both. When Schur form based reductions
are used to solve Lyapunov equations, the computation for such
(Schur form based) reductions needs about flops (see [6]),
where 1 flop equals 1 addition/subtraction or 1 multiplication/di-
vision. About flops are necessary to solve the reduced equa-
tion and to compute the solution.The basic method is described in
[7]. For the solutions of AREs, the Schur approach of Laub [5] re-
quires flops of which flops are required to reduce
a Hamiltonian matrix to real Schur form and the rest ac-
counts for the computation of the eigenvalues and solving a linear
equationoforder (i.e., flops).Consequently,bothRiccati
and Lyapunov equations require computations. Hence the
advantage of iterative schemes such as the Kleinman algorithm
(which will require several Lyapunov equations to be solved, typ-
ically) is not always the speed of computation, but rather, it is the
numerical reliability of the computations to reach the limiting
accuracy of a solution. Given a specified tolerance or

, when we use our algorithm to solve an ARE with a
sign indefinite quadratic term, typically we need 3–5 iterations
(see the random test in Example 2 of Section VII). In such situ-
ations, the flop count of our algorithm may be lower than some
direct methods if we only need 3 iterations to obtain the solution
of an ARE; however, in some situations where we need more than
3 iterations to solve an ARE with our algorithm, the flop count
of our algorithm may be higher when compared with some di-
rect methods. Consider a typical example to illustrate this point:
suppose our proposed algorithm is used to solve an ARE with a
sign-indefinite quadratic term and this ARE is reduced to a se-
quence of four AREs with a negative semidefinite quadratic term.
Furthermore, suppose the Kleinman algorithm is used to solve
these four AREs and each of them can be solved using two Lya-
punov equations. Then since the flop count of solving a Lyapunov
equation is (see [6]), the total flop count for our algorithm to
solve such an ARE with a sign-indefinite quadratic term is ,
which is higher than (flop count of the Schur method).

Besides the Kleinman algorithm, there are some other iterative
methods to solve AREs [16], [21], [23]–[25], [29], [31]–[33],
[35], [36], [38]–[40], some of which exhibit quadratic conver-
gence. Among iterative methods to solve ARE (1), Newton-type
algorithms are typical and widely used [16], [21], [24], [25], [29],
[31]–[33], [35], [36]. In fact, Newton’s method can be used to
solve more than just symmetric AREs like (1). It can also be used

to solve non-symmetric AREs where and in (1) are not nec-
essarily symmetric [27], [28]. Besides Newton-type algorithms,
there are other iterative algorithms to solve AREs with a sign
indefinite quadratic term, for example the matrix sign function
method (see [31], [33], [36]). However, there are also disadvan-
tageswhenthematrixsignfunctionmethodisusedtosolveAREs,
for example, when the eigenvalues of the corresponding Hamil-
tonian matrix of a given ARE are close to the imaginary axis,
this method will perform poorly or even fail (see Example 3 in
Section VII). In this paper, since we will develop an iterative al-
gorithm to solve AREs arising in control, for the purpose
of comparison we only use the iterative algorithms in [25], [35],
which are Newton-type algorithms that can be used to solve the
same class of AREs. However, our proposed algorithm to solve
AREs is significantly different from the Newton’s method algo-
rithms in [25], [35]. The key distinguishing features between our
algorithm and the Newton’s method algorithms in [25], [35] are
as follows:

• In [25], [35], a suitable initial condition must be chosen to
run the corresponding iterative algorithms, and this may not
always be straightforward to do, while in our proposed al-
gorithm, an initial condition can always be simply
chosen (see Section III). Also, when the Newton’s method
algorithms in [25], [35] are used to solve AREs, the compu-
tation cost and efficiency will depend greatly on the choice
of the initial condition (see Example 5 in Section VII for an
illustration of this).

• In [25], [35], an ARE is reduced to a series of Lyapunov
equations, while in our proposed algorithm, an ARE with a
sign indefinite quadratic term is reduced to a series of AREs
with a negative semidefinite quadratic term, i.e., a series of

-type AREs.
Apart from these key distinguishing features mentioned

above, there are some minor differences between the algo-
rithms in [25], [35] and our proposed algorithm:

• In [25], [35], many different monotonic matrix sequences
which converge to the stabilizing solution of an ARE can
be constructed; but in our proposed algorithm, a unique
and well-motivated (also with a game theoretic motivation)
monotonic matrix sequence which converges to the stabi-
lizing solution of an ARE is constructed.

• In [25], [35], monotonic matrix sequences converging to
the stabilizing solution of an ARE are non-increasing; but
in our proposed algorithm, the unique monotonic matrix
sequence converging to the stabilizing solution of an ARE
is non-decreasing.

The above commentary is all concerned with AREs arising
in deterministic control systems (and, actually LQG and
filtering problems). Modifications of the AREs considered can
arise when state-dependent and input-dependent noise enters
the equations. There is some existing literature dealing with
such problems, see [17]–[20], [34], [35] and again, Newton-type
methods can be applied, see, e.g., [3], [26], [30], [35]. The equa-
tions in question are however not of interest to us here.

As noted above, in the work presented in this paper, we reduce
the problem of solving a generic Riccati equation with a sign
indefinite quadratic term to one of generating successive itera-
tions of solutions of conventional -type AREs with a negative
semidefinite quadratic term (each of which is then amenable to
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the Kleinman algorithm). Consequently, we are reducing a Ric-
cati equation that has no straightforwardly initialized iterative
scheme for its solution to a number of successive iterations of
Riccati equations, each of which can (if desired) be solved by
an existing iterative scheme (e.g., the Kleinman algorithm).

The structure of the paper is as follows. Section II establishes
some preliminary results which will be used in the main the-
orem. Section III presents the main result with a proof of global
convergence and Section IV states the algorithm. Section V
provides a proof for the local quadratic rate of convergence.
Section VI gives a game theoretic interpretation of the proposed
algorithm. Section VII presents some numerical examples that
demonstrate the effectiveness of our algorithm. Section VIII of-
fers additional technical remarks and Section IX gives some
concluding remarks. The Appendix includes two examples rel-
evant to the technical remarks.

II. PRELIMINARY RESULTS

We firstly introduce some notation: Let denote the set
of real matrices; denotes the set of integers with
denoting the set of integers greater or equal to ; de-
notes the spectral radius of a square matrix; denotes the
maximum singular value of a matrix; denotes the spec-
trum of a square matrix; denotes the Euclidean norm. A
matrix is said to be Hurwitz if all its eigenvalues
have negative real part; A matrix is called a stabi-
lizing solution of ARE (1) if it satisfies ARE (1) and the matrix

is Hurwitz.
In this paper, we will restrict attention to the unique stabi-

lizing solution for the following ARE:

(2)

where are real matrices with compatible dimen-
sions. Note that stabilizing solutions to AREs are always unique
(see [10]) when they exist, but for AREs with a sign indefi-
nite quadratic term, the unique stabilizing solution may not
always be positive semidefinite. Since our interest arises from
AREs used for control, in this case, in order to obtain an

controller, we need to solve AREs with a sign indefinite
quadratic term and the stabilizing solutions of these AREs are
also required to be positive semidefinite if such an con-
troller exists. So we focus on a unique stabilizing solution to (2)
that happens to be also positive semidefinite when this exists.
Necessary and sufficient conditions for the existence of a pos-
itive semidefinite stabilizing solution to (2) are given in [8].
However, these conditions are not easily computable as they in-
volve integral operators and operator inverses.

The first lemma gathers together some straightforward com-
putations.

Lemma 1: Given real matrices , , , with compatible
dimensions, define

(3)

Given also , , then

(4)

where Furthermore, if ,
satisfy

(5)

then

(6)

and

(7)

Proof: Equation (4) trivially follows via algebraic manip-
ulations. Results (6) and (7) are simple consequences of (4).

The second lemma sets up some basic relationships between
the stabilizing solution to (2) when it exists and the matrices

, satisfying (5).
Lemma 2: Given real matrices , , , with compatible

dimensions, and satisfying
(5), and a stabilizing satisfying (2), and let

and
. Then

(i) if is Hurwitz,
(ii) is Hurwitz if

Proof: (i) Satisfaction of (5) yields satisfaction of (6) via
Lemma 1. Adding (6) to (2), we have

(8)

Since

(9)

via (3), substituting (9) into (8) and rearranging, we have

(10)

where . Note that the last two terms in (10)
are positive semidefinite, so (i) holds by a standard Lyapunov
equation type argument (see Lemma 3.18 in [4] for example).

(ii) Rearrange (10) as follows:

(11)

Now letting

Equation (11) becomes

(12)

Since and , it is only required to
show that is detectable for the required result to follow



LANZON et al.: COMPUTING THE POSITIVE STABILIZING SOLUTION TO ALGEBRAIC RICCATI EQUATIONS 2283

(see again Lemma 3.19 in [4] for example). To this end, note
that is detectable because

for , which is clearly Hurwitz as is the sta-
bilizing solution for (2). This concludes the proof of part (ii).

III. MAIN RESULTS

In this section, we set up the main theorem by constructing
two positive semidefinite matrix series and , and we also
prove that the series is monotonically non-decreasing and
converges to the unique stabilizing solution (which is also
positive semidefinite) of ARE (2) if such a solution exists.

Theorem 3: Given real matrices , , , with com-
patible dimensions such that has no unobservable
modes on the -axis and is stabilizable, define

as in (3). Suppose there exists a stabilizing
solution , which is also positive semidefinite, of ARE (2).
Then

(I) two square matrix series and can be defined for
all recursively as follows:

(13)

(14)

is the unique stabilizing solution of

(15)

(16)

(II) the two series and in part (I) have the following
properties:
1) is stabilizable ;
2) ;
3) is Hurwitz ;
4) .

(III) the limit

exists with . Furthermore, is the unique
stabilizing solution of ARE (2), which is also positive
semidefinite.

Proof: We construct the series for and to show re-
sults (I) and (II) together by an inductive argument. Firstly we
show that (I) and (II) are true when . Then, given
where (I) and (II) are satisfied, we will show that (I) and (II) are
also satisfied for

Since via (13), (II 1) is trivially satisfied by assump-
tion. Since (15) reduces to

(17)

it is standard [4], [9] that there exists a unique positive semidef-
inite and stabilizing solution for (17); hence . Since

via (16), then we have
by Lemma 1 and (II 2) is satisfied. It is also standard [4], [9]

that is Hurwitz (since is the stabilizing so-
lution of (17)), hence (II 3) is satisfied on noting that
and . We can show (II 4) is satisfied by the following
steps:

1) Since and , then ;
2) Since ,

is Hurwitz (see [4] or [9]);
3) Since is Hurwitz, then

by Lemma 2

We now consider an arbitrary , suppose that (I) and
(II) are satisfied for , and show that (I) and (II) are
also satisfied for . Since
by inductive assumption (II 2), necessary and sufficient condi-
tions for the existence of a unique positive semidefinite and sta-
bilizing solution to (15) are (see [4], [9]):

(α) is stabilizable;
(β) has no unobservable modes on the

-axis.
Since and

, con-
ditions and are clearly equivalent to the following two
conditions, respectively:

(α1) is stabilizable;
(β1) has no unob-
servable modes on the -axis.

We will now show the existence of is guaranteed via the
following two points:

1) Since result (II 4) holds by inductive assumptions, we have
, and thus is Hur-

witz by Lemma 2 Part (ii). Hence
is stabilizable and thus condition and result (II 1) for

are satisfied;
2) Since is Hurwitz by induc-

tive assumption (II 3), condition is also satisfied.
Since conditions and hold, there exists a unique posi-
tive semidefinite and stabilizing solution for (15) with

. Since , (II 2) is trivially satisfied for
via Lemma 1. Since is the stabilizing solution to

(15), it follows that
is Hurwitz, hence (II 3) is satisfied when .

Since and , . Also,
since by inductive assumption (II 4) for

, it follows that is Hur-
witz via Lemma 2 Part (ii) and this in turn gives via
Lemma 2 Part (i). Hence (II 4) is satisfied for .

The case for and the inductive step establish that (I) and
(II) are true , so the proof for (I) and (II) is completed.

(III) Since the sequence is monotone (i.e., )
and bounded above by (i.e., ), the sequence con-
verges to a limit (see pp. 33–34 in [37] for the details), and
convergence of the sequence to implies convergence of

to 0 since
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Then it is clear from (II 4) that , from (II 2) that
must satisfy , and from (II 3) that

must be Hurwitz. Thus is a stabilizing
solution to . Since is a stabilizing solution
to and the stabilizing solution of an ARE is always
unique (see [10]), it is clear that .

The following corollary gives a condition under which there
does not exist a stabilizing solution to . This
is useful for terminating the recursion in finite iterations.

Corollary 4: Given real matrices , , , such that
has no unobservable modes on the -axis and

is stabilizable, and let and be defined
as in Theorem 3. If such that is
not stabilizable, then there does not exist a stabilizing solution

to .
Proof: Restatement of Theorem 3, implication (II 1).

IV. ALGORITHM

Given real matrices , , , with compatible dimen-
sions, a specified tolerance , and supposing has
no unobservable modes on the -axis and is stabiliz-
able, an iterative algorithm for finding the positive semidefinite
stabilizing solution of (2), when it exists, is given as follows:

1) Let and .
2) Set .
3) Construct (for example using the Kleinman algorithm in

[2], though this is not necessary) the unique real symmetric
stabilizing solution which satisfies

(18)

where is defined in (3).
4) Set .
5) If , then set and exit. Other-

wise, go to step 6.
6) If is stabilizable, then increment

by 1 and go back to step 2. Otherwise, exit as there does not
exist a real symmetric stabilizing solution satisfying

.
From Corollary 4 we see that if the stabilizability condition

in step 6 fails at some , then there does not exist a sta-
bilizing solution to and the algorithm should
terminate (as required by step 6). But when this stabilizability
condition is satisfied , construction of the series
and is always possible and either converges to (which
is captured by step 5) or just diverges to infinity, which again
means that there does not exist a stabilizing solution to

.
Remark 1: It is worth pointing out that when the Kleinman

algorithm is used to solve (18), how to stop the Kleinman itera-
tion can be an important issue (see Example 2 in the Appendix
for a demonstration of this). In fact, a simple criterion to stop
the Kleinman iteration is to compute the residue of (18). When
the residue of the right hand side terms of (18) is small enough,
the Kleinman iteration should be stopped.

Remark 2: For a method to check the stabilizability of a ma-
trix pair in step 6, one can refer to p. 50 in [4].

V. RATE OF CONVERGENCE

The following theorem states that the local rate of conver-
gence of the algorithm given in Section IV is quadratic.

Theorem 5: Given the suppositions of Theorem 3, and two
series , as defined in Theorem 3 Part I. Then there exists
a such that the rate of convergence of the series is
quadratic in the region .

Proof: We prove the rate of convergence of by proving
the rate of convergence of . Let

and . Note that
is Hurwitz (see Theorem 3 Part II) and is Hurwitz since
is the stabilizing solution of (2) (see [4]), and let and be
uniquely defined by:

(19)

(20)

where is the identity matrix with appropriate dimensions. The
matrices and are positive definite because of the stability
properties of and . Since and are uniquely defined
and , then , and thus for any small

, such that

This implies that

(21)

Now, define a monotonically non-increasing sequence by:

From (15) and Theorem 3, we have :

(22)

which can be equivalently rewritten as

(23)

Now, there exists (e.g., ),
independent of , such that

(24)

Multiplying on each side of the (20), we obtain

(25)

Then, subtracting (23) from the (25), we obtain

(26)

Now note that is Hurwitz and the inequality (24) holds, then
by (26) we have (see Lemma 3.18 in [4])

(27)
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Thus as (see [6]). Hence
,

Thus, such that , we ob-
tain a quadratic rate of convergence, which concludes the proof.

VI. GAME THEORETIC INTERPRETATION OF THE ALGORITHM

In this section, for the purpose of motivation, interpretation
and further research, a game theoretic interpretation of the al-
gorithm will be given. At the same time, we will also note that
this interpretation is closely linked to an optimal control concept
of approximation in policy space [11]–[13]. In this section, we
will show that a game theory performance index can be approx-
imated by a series of successive cost functions. At each itera-
tion, the optimal policy is found to minimize the corresponding
cost functions. With the increment of each iteration, the optimal
policies approach the final optimum and the saddle point of the
cost functions approaches the saddle point of the game theory
performance index. In fact, it can be shown (see [14], [15]) that
the technique of policy space iteration can be used to replace
nonlinear Hamilton-Jacobi partial differential equations by a se-
quence of linear partial differential equations (even when the ap-
proximations and the optimal feedback law are nonlinear func-
tions of the state). This is important because it is difficult [14]
to solve Hamilton-Jacobi equations directly to obtain optimal
feedback control in many cases.

Consider the dynamical system

(28)

with the game theory performance index

(29)

where denotes the initial state of the system, is the state
vector, denotes the control input, denotes the disturbance
input and , , , are given real matrices with compatible
dimensions and appropriate stabilizability/detectability condi-
tions. It is desired that minimizes the cost function and
maximizes it. It is well-known [9] that the optimal control law
and the worst case disturbance (a saddle point of )
are given by:

(30)

(31)

where is the unique stabilizing solution to (2). See [9]
for more details on such game theory problems.

Let us now propose a heuristic induction which gives a game
theoretic interpretation to our proposed algorithm. Suppose that
at iteration we have a trial control law with

defined as in Theorem 3 Part I. Then we set .

Note that this is NOT the worst case corresponding to
(unless ), but it is a strategy we wish to im-

pose since it will connect the heuristic ideas of this section to the
earlier algorithm. The choice is also motivated by what happens
at the optimum, as when . With this choice of

fixed, we now wish to find a new optimal control; i.e., now
has to minimize the following LQ cost function:

(32)

subject to

(33)

where has been substituted in (28) and (29) to
yield the above problem. Under appropriate conditions (which
will be analyzed in more details below via (36)), this LQ
problem has an optimal solution for given by:

where is the unique stabilizing solution to

(34)

We will now show that actually equals as defined
in Theorem 3 Part I. To do this, we will equivalently show that

equals . Towards this end, let .
Firstly we will show that satisfies the same equation as .
Using in (34), we have

(35)

The terms above independent of are

which are equal to . Also, recall that
, hence (35) reduces to

(36)

Since this is the same equation as (18), we conclude that
satisfies the same equation as . Also, existence of is
equivalent to existence of . Necessary and sufficient con-
ditions for the existence of are: is stabilizable and

has no unobservable modes on the -axis. These
conditions were analyzed in the proof of Theorem 3 and were
shown to be fulfilled via the existence of the stabilizing solution

to (2).
Now note that is a stabilizing solution to

(34), meaning that is Hurwitz.
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Fig. 1. Heuristic game plan.

But .
Hence also makes Hurwitz. Since is
the unique stabilizing solution to (18) and since satisfies the
same equation and is also stabilizing, we conclude that

(see [10]), thereby in turn giving .
Since the optimal control law that minimizes cost function

(32) subject to constraint (33) is , we now
set (according to our game plan) and pro-
ceed in this manner as outlined in the chart in Fig. 1.

This heuristic game plan converges to the optimal control (30)
and the worst case disturbance (31), thereby also giving a game
theoretic interpretation to the proposed algorithm.

VII. NUMERICAL EXAMPLES

In this section, five examples are given. Example 1 provides
a numerical comparison with other existing approaches, and
shows that our algorithm works well when other approaches
work well too. Example 2 provides a random test to compare
our algorithm with the MATLAB command CARE and shows
that our algorithm has good efficiency and accuracy when com-
pared with CARE. Example 3 shows that our algorithm still
works well when some other approaches (such as the MATLAB
command CARE, the Schur method of [5], and the matrix sign
function method of [31]) do not work. Example 4 demonstrates
that there in fact does not exist a stabilizing solution to
(2) when the stabilizability condition in step 6 of the algorithm
is not satisfied. Example 5 shows that the computational cost
of methods in [25], [35] depend greatly on the choice of initial
condition. This is in contrast to our method that can always be
initialized with the simple choice .

Example 1: This simple example is used to illustrate that the
algorithm proposed in this paper works well in situations where
the traditional MATLAB command CARE (see [22] for the

algorithm of CARE) also works well. Let

The traditional MATLAB command CARE gives the solu-
tion:

The algorithm proposed in this paper gives an almost identical
solution after only 3 iterations with a specified tolerance

. The normalized error between the two solutions is
.

Example 2: In this example, to show the efficiency and ac-
curacy of our algorithm compared with the MATLAB command
CARE, we have a random test including 200 samples (100 exam-
ples for the specified tolerance and 100 examples for the
specified tolerance ). The test procedure is as follows:

1) Consider a state-space representation for a dynamic system

where , , , and
are input, state, output respectively;

2) Set the example number ;
3) Choose , , , randomly and uniformly among the inte-

gers from 1 to 100;
4) Generate a random system by using MATLAB command

sysrand with , , , obtained in step 3, and obtain , ,
, by MATLAB command unpck;

5) Partition the matrix , where and
;

6) Try MATLAB command CARE to solve the corresponding
ARE with , , ,

, , ,

where , and are identity matrices with dimensions
, , , respectively. If there does not exist a stabilizing so-

lution to the ARE, go back to step 3;
7) Use our algorithm to solve this ARE. For our algorithm, the

iteration will be stopped when ,
where is the matrix sequence defined in Theorem 3 Part
(I);
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TABLE I
ILLUSTRATION OF ITERATION COUNT OF OUR ALGORITHM AND

ACCURACY COMPARISON WITH CARE FOR 100 RANDOM

EXAMPLES ���� � � � � � ����

TABLE II
ILLUSTRATION OF ITERATION COUNT OF OUR ALGORITHM AND

ACCURACY COMPARISON WITH CARE FOR 100 RANDOM

EXAMPLES ���� � � � � � �����

8) Let the solution of this ARE obtained by our algorithm be
and the solution of this ARE obtained by the MATLAB

command CARE be ;
9) Set , and let ;

10) Repeat the steps 3–9 until ;
11) Replace in step 7 by , set and

repeat the steps 3–10.
ForeachrandomexampleinthefollowingTableIandTableII,“It-
erations” indicates thenumberofnecessary toobtain thespecified
tolerance in step 7; “ ” is the order of magnitude of (de-
fined in step 9), or the order of magnitude of the normalized com-
parison error between the stabilizing solutions obtained by our
algorithm and the stabilizing solutions obtained by the MATLAB
command CARE; “Number of examples” means the number of
random examples that required “Iterations” number to converge.
From Table I and Table II, we can conclude that our proposed al-
gorithm works well in most cases with good efficiency (only 3–5
iterations in most examples) and accuracy when compared with
the MATLAB command CARE.

A summary of the results in Table I and Table II is as follows:
1) In both Table I and Table II, our proposed algorithm con-

verges in ONLY three to five iterations in most examples.
2) When the prescribed tolerance is , we have

for each random example in Table I; when the pre-
scribed tolerance is , we have for
each random example in Table II.

Example 3: The following example illustrates that the pro-
posed algorithm works well when other traditional methods
fail. This example is a slight modification of example 6 in [5].
Choose the matrices , , ,

in (2) as follows:

. . .
. . .

...
...

. . .
. . .
. . .

...
...

diag

where is the introduced modification. In this ex-
ample, the Schur method in [5] does not produce an accurate
result, similarly to the MATLAB command CARE. The algo-
rithm proposed by Kleinman in [2] cannot be used because the
term in the Riccati (2) is not positive semidef-
inite. However, the algorithm proposed in the paper easily gives
the solution with the specified accuracy as will be shown next.

Firstly we attempt the Schur method in [5] with this example.
Let be defined as in (3), and be the solution to (2) by using
this Schur method. We evaluate the accuracy of the solution
by calculating . The smaller is, the closer is
to the correct solution. After calculation, we obtain

whichis far too large.Thus,wecanconclude that the
Schur method in [5] fails to give a solution in this example. Sim-
ilarly, let be the solution obtained by the MATLAB command
CARE.For this solution,wecanobtain
which again is too large. So we conclude that MATLAB com-
mand CARE also fails to give a solution in this example. If we
were to try to refine the very coarse solution obtainedby the Schur
method in [5] using Kleinman’s method in [2], this too fails as
this algorithm diverges with each iteration (as expected). This
can be shown as follows: let with denote the itera-
tive series produced by the Kleinman algorithm, then we obtain

, , ,
, , .

Ifweusethematrixsignfunctionmethodin[31] tosolvethisARE
and let be the corresponding solution, we obtain

which is again far too large.
However, when we use our proposed algorithm, we note

that a unique stabilizing solution to (2) can be
found with limiting accuracy after only 4 iterations with

Example 4: The following example shows that if
is not stabilizable in step 5 of the

algorithm, then there does not exist a stabilizing solution
to (2). Choose

We note that has no unobservable modes on the
-axis and is stabilizable. When we run our algo-

rithm, we find that is not stabilizable after
one iteration since



2288 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 10, NOVEMBER 2008

This is consistent with the fact that there does not exist a sta-
bilizing solution to (2). In fact, we can find the unique
stabilizing solution

which is clearly not positive semidefinite.
Example 5: The following example comes from example 1 in

[25] and it gives a numerical comparison between our algorithm
and the algorithms in [25], [35]. We set and choose

We firstly try our algorithm on this example. After two iterations
we have

with . Now we try the
algorithm in [25] with the initial guess

We need five iterations to obtain

with . If we try the algorithm in [25]
with a different initial guess

we need three iterations to obtain

with . If we try the algorithm in [35]
with the initial guess

we need two iterations to obtain

with . If we try the algorithm in
[35] with a different initial guess

we need five iterations to obtain

with . From this example, we can
see that if the algorithms in [25], [35] are used to solve Riccati
equations, the computational cost and the number of iterations
will depend greatly on the choice of the initial condition. How-
ever, a good initial choice which leads to lower computational
cost is not always straightforward to obtain since there appears
to be no systematic procedure. For our algorithm, the initial con-
dition can always be simply set to .

VIII. TECHNICAL REMARKS

Example 1 in the Appendix shows that
is not guaranteed to always be Hurwitz for all

. Consequently, if one were to use the Kleinman algorithm
to solve (18), the Kleinman algorithm cannot always be initial-
ized with the simple choice (for Hurwitz).
Also, we point out that while is guaranteed to be monoton-
ically increasing, is not guaranteed to be monotonically de-
creasing. The same Example 1 in the Appendix demonstrates
this.

It is worth also pointing out that (18) cannot be simply
replaced by one single Kleinman algorithm iteration (corre-
sponding to a single Lyapunov equation). Example 2 in the
Appendix shows that the algorithm would not converge in that
situation.

IX. CONCLUSION

In this paper, we proposed an iterative algorithm to solve
AREs arising from standard control problems. Numerical
examples have been provided to show that our algorithm has su-
perior numerical reliability when compared with other existing
methods. Furthermore, we have also proved that our algorithm
has global convergence, can be initialized with a simple choice

, and has local quadratic rate of convergence. It can
hence be anticipated that our algorithm can be used in situa-
tions where AREs need to be solved with high accuracy. We
also presented a game theoretic interpretation of the algorithm,
which underpins work currently being undertaken on tools for
solving Hamilton–Jacobi–Bellman–Isaacs equations arising in
game theory.

APPENDIX

Example 1: This is a counter-example to a conjecture that
is Hurwitz and is monotonically

decreasing. Choose equation shown at the bottom of following
page.
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Let , where is the iteration
number. We compute the eigenvalues of as follows:

It is clear that , and are not Hurwitz because each of
them has an eigenvalue with positive real part. For this example,

we also note that the series is NOT monotonically decreasing
as follows:

since all the above differences are not sign definite.
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Example 2: This example shows that the series may not
converge if we only use one Kleinman iteration (corresponding
to a single Lyapunov equation) to solve (18) to obtain an ap-
proximation to the series at each iteration. Choose

Let denote the feedback matrices which we used to initialize
the Kleinman algorithm at each iteration and denotes the iter-
ation number. We choose

���
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Define as in (3). In this example, the algorithm diverges if we
use only one Kleinman iteration at each step to solve (18) as

It is clear that the series diverges if we only use one Kleinman
iteration to solve (18) to obtain an approximation to the series

at each iteration.
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