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Simplified Rapid Switching Gain Scheduling
for a Class of LPV Systems

Arvin Dehghani, Michael C. Rotkowitz, Brian D. O. Anderson, and
Sung H. Cha

Abstract—A limitation of the original gain-scheduling approaches is that
the closed-loop stability can only be assured when the underlying param-
eters vary sufficiently slowly. A remedy exists but requires for its imple-
mentation the possible solution of asymptotic Riccati equations (ARE) for
an infinite number of different parameter values, and the on-line solution
of a Riccati differential equation (RDE) with time-varying coefficient ma-
trices. Our method avoids solving the RDE online and instead uses an ex-
plicit transient formula that looks up the predetermined solutions of the
associated AREs at a finite set of given system operating points. Further-
more, only a finite number of AREs are solved to determine a finite set of
controller gains.

Index Terms—Asymptotic Riccati equations (ARE), Riccati differential
equation (RDE.

I. INTRODUCTION

Gain scheduling is a control method for nonlinear systems that uti-
lizes a family of linear controllers, each of which provides satisfac-
tory control for a different operating point of the system. The so-called
scheduling variables, or indeed observable variables, determine the cur-
rent operating region of the system and enable the appropriate choice of
the linear controller. Gain scheduling can be viewed as an intuitive form
of adaptive control, and allows the designer to choose any suitable con-
trol design method for implementing the local controllers [1], [2]. Once
a set of local controllers is determined, a scheduling mechanism selects
and switches a controller (or part of it) in the closed-loop while the plant
and its operating points or associated physical parameters change over
time. In fact, the idea of gain scheduling is well suited for linear pa-
rameter varying (LPV) systems, and nonlinear systems where the non-
linearities are due to physical parameter variation, see, e.g., [3]-[6]. In
effect, the ideas of gain scheduling can also be viewed as a form of mul-
tiple model adaptive control (MMAC) [7] implementation. The work
of this note pursues the possibility of exploiting a viable approach to
gain scheduling in the MMAC context for the LPV systems [1], [2],
[8].

For some time, it has been recognized that there is a theoretical gap
in many of the formulations of gain scheduled controllers. The fact
that switching occurs—even among controller-plant pairs which in-
dividually constitute stable closed-loops—raises a potential for insta-
bility. It is known that if the switching is very slow, instability cannot
occur, but this sort of result is conservative; see, e.g., [9]. One way
this potential instability difficulty is addressed involves results on LPV
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plants and LPV controllers with the parameter (which may vary arbi-
trarily fast) passed exactly from the plant to the controller. However,
these results guarantee quadratic stability, which is an unnecessarily
demanding concept. Apart from such conservatism, the contemporary
theory has difficulty demonstrating that if there are continuing slow
changes or rare rapid changes of the operating point, then stability is
retained.

In developing supporting theories that guarantee the behavior of
the scheduled controller in a process of repeated design syntheses
associated with some scheduling strategy connecting locally designed
controllers, an important step appears to be the formulation of the
gain-scheduling design in the context of convex semidefinite pro-
gramming expressed in terms of linear matrix inequalities (LMIs);
see, e.g., [8], [10], [11]. Another vital step in the characterization of
the aforementioned controller is the search for adequate Lyapunov
functions. These functions are generally not readily obtainable. The
use of a fixed Lyapunov function, as opposed to one that depends
on the scheduled variables, resulted in the linear-fractional transfor-
mation (LFT) gain-scheduling techniques [12], [13] or the so-called
quadratic gain-scheduled techniques [14]. Such approaches, however,
are conservative since they allow for arbitrary rates of variation in
the scheduled variables [15]. Even worse is that some systems are
not quadratically stabilizable, i.e., are not stabilizable on the basis
of a single Lyapunov function [15], [16]. Exploiting the ideas of
parameter-dependent Lyapunov functions [15], which allow the in-
corporation of information on the rate of variation in the analysis or
synthesis technique, can lead to a less conservative design. However,
the implementations of such designs may require the real-time mea-
surement of the parameter and even its time derivative, which is not
available or hard to estimate. Attempts to overcome such restrictive
implementation requirement, specially on the time derivative of the
parameter, amount to utilizing a fixed Lyapunov function for the
parameter-dependent control problem and hence compromise heavily
on the performance [3]. Ensuring stability in such systems is also still
an active area of research, e.g., [17].

A particular way of synthesizing controllers with potentially fast
variations of parameters is suggested in [1], [18] but the method de-
mands large computational power. The results in [18] suggest a partic-
ular way of synthesizing the gain scheduled controller. To ensure sta-
bility, the operating point is assumed to vary continuously and the plant
is assumed to be minimum-phase at every operating point. A linear
quadratic Gaussian (LQG) design is performed at each operating point
using the ideas of loop transfer recovery (LTR) [19], [20] with the state
feedback gain arranged to achieve very fast eigenvalues for its associ-
ated dynamics, and with the observer gain used to shape the effective
overall closed-loop dynamics. The gain at any one operating point is
obtained via the steady state solution of the algebraic Riccati equa-
tion (ARE) with matrices corresponding to the operating point. The
observer gain on the other hand is determined using the solution of
a time-varying Riccati differential equation (RDE). However, this ap-
proach is not computationally viable due to the requirement of solving
the RDE and an infinite number of control AREs. We address these
problems by proposing an approach which avoids solving the RDE on-
line and instead uses an explicit transient formula that looks up the
predetermined solutions of the associated AREs at a finite set of given
system operating points and connects them in a standard way. Further-
more, only a finite number of AREs are solved to determine a finite
set of controller gains. Our method offers a modification and computa-
tional simplification of the gain scheduling design of [18] but achieves
similar level of performance.

Section II presents a short background leading to the introduction of
the problems of interest. The main results are presented in Section III
followed by the stability analysis of Section IV. The numerical example
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of Section V illustrates the efficacy of the proposed method. Section VI
contains concluding remarks.

II. BACKGROUND AND PROBLEM SETUP

Consider a LPV system described by

i(t) = A (A1) «(t) + B (A1) u(t)
y(t) =C (A()) x(t) 6))

where x(t), u(t), and y(¢) are the state variable, (control) input, and
system output, respectively. The time-varying system parameter A :
R*T — Apox can be measured online, where Apox 1= [-1,1]7,p > 0.
The matrix functions A : Apox — R™™, B : Apox — R™™™ and
C' : Apox — RF*™ are assumed to have bounded entries at all times.
Here we suppose the system has p > 0 physical parameters and assume
that the parameters remain bounded, and that the range of each param-
eter can be restricted to be symmetric about zero and within [—1, 1]
by variable substitutions and scaling. As in [18], the plant is assumed
to be minimum-phase at every operating point. We also assume that
the system in (1) is uniformly controllable and uniformly observable
[21], and focus on LPV systems where their operating points or asso-
ciated physical parameters—such as friction, mass and load, etc., are
frequently changing over time. The scope could include special types
of nonlinear systems, still addressable in the framework of LPV sys-
tems, where the nonlinearities are due to physical parameter variation.

A typical gain scheduling controller design procedure involves the
following steps [2], [8], [22]. Essentially, different choices for each step
will result in different gain scheduling methodologies at the end.

e Step 1: Identify a set of nominal operating points for the given
system, and determine their characteristics—how often, how fast
and how far their values are changing—with (physical) parameter
variations;

¢ Step 2: Decide how to treat the local plants corresponding to the
identified set of operating points via linearizations and/or refor-
mulation;

¢ Step 3: Choose a design technique for a family of local linear
controllers corresponding to the family of local LPV plant models;

* Step 4: Implement a scheduling algorithm to change the control
gains for the family of local controllers;

e Step 5: Analyze and assess the overall performance and stability.

We deal with the problems in the Steps 3, 4, and 5 above, and as-
sume that the assumptions in Steps 1 and 2 hold. The set of operating
points and its characteristics (Step 1) are assumed to be available and
the nonlinear plants are assumed to be linearized or reformulated to
have a family of linear local models (Step 2). The Steps 3 and 4 will be
addressed as a coupled problem using the idea of loop transfer recovery
(LTR) with the time-varying Kalman filter.

The Step 1 is often classified as a general adaptive control problem
and many involved aspects still remain for a methodological approach
to be found [7]. The questions at this step are about how many oper-
ating points are adequate for achieving the desired performance and
how one should place the identified operating points within the param-
eter space. At Step 2, two choices are linearizing a nonlinear system
at each operating point resulting in a family of linearized local plant
models and reformulating the original nonlinear equations as a global
LPV model that hides its nonlinearities into the scheduling variable
[18]. The third step, whether the given local LPV model is obtained
from linearization or reformulation, involves the design of a family
of local linear controllers corresponding to the family of local LPV
plant models using any linear control design method. The fourth and
fifth steps are often carried out together where the designer should take
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care of the instability and performance degradations during normal op-
erations and switching between local controllers. Analytic and simu-
lation-based verifications may be performed for local and global be-
havior of the designed controller. Next, two definitions are presented
which are vital in presenting the results of the proceeding sections. In
this manuscript, A" denotes the transpose of a matrix A.

Consider the time-varying system

#(t) = A(t)z(t) + B(t)u(t); y(t) = C(t)z(t) (2)

where x(to) is given, and the matrices A, B and C' are of compatible
dimensions and with bounded entries.

Definition 1 (Uniform Observability [23]): The pair (A(t), C(t))
of the system in (2) is defined to be uniformly observable if and only if
dés, o, B > 0 such that

al <Wi(s,s+6,) <8I, VseER 3)

using the Observability Gramian W : R x R — R™*"
t

W(s,t) = /@l(T, $)C'(1)C(T)®(T, 8)dT “)

s

where @ is the transition matrix corresponding to A.
Definition 2 (Uniform Controllability [23]): Uniform Controlla-
bility is defined as
acl < M(s—6q,8) < B.I, Vs€ER 5)
for some 6., e, 3c > 0 in a dual manner to Definition 1 using the
Controllability Gramian

+

M(s,t) = /<I>(t, 7)B(T)B(1)®'(t,7)dr (6)

s

where @ is the transition matrix corresponding to A.
Note that if the system is uniformly controllable (or uniformly ob-
servable) it is also uniformly stabilisable (or uniformly detectable).

A. Computational Problems

A gain scheduling design involves designing several local controllers
with the desired properties and performance at several operating points
followed by a scheduling of the local controllers in an online manner.
However, to preserve the desired properties and ensure performance
and stability effectively, the parameter must be limited to vary slowly.
This requirement fundamentally limits the applicability of the gain
scheduling design. Given the assumption that for every parameter
value the plant is minimum phase, the approach of [18] ensures a stable
closed loop even with fast though bounded-rate parameter variation.

Let T, Q(k), and R(k)Vk € Apox be symmetric matrix design pa-
rameters whose values are to be chosen; they must meet the LQR con-
straints of definiteness or semidefiniteness. For the LPV system in (1),
the gain scheduling controller is a standard observer and state-feedback

F=[AA®) = B(A()G(A®)) — Ht)C (A(t)] x &
—H(t)(r —y)
w:=—G(A(t)z @)

where r, &, u, and y are, respectively, the reference signal, state esti-
mate, control, and system output. The observer gain H : Rt — R"**

H(t) = S(H)C (M) (R (A1)} ®)
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and the control feedback gain G : Ao — R™*"
G(r) =T""B'(r)Z(x) ©)
where X(t) is the solution of the time-varying Kalman filter RDE

S(t)=S(t)A (A1) + A (A1) Z(t)

+QA®)

—T(HC (A1) (R(A) T CAM) () (10)
with £(0) = £'(0) > 0, and Z(k) is the stabilizing solution of the
ARE

Z(r)A(r) + A (1) Z(r) + C'(r)C(k)
—Z(k)B(r)T "B (r)Z(r)=0. (11)

Note that the control ARE in (11) is an infinite collection of steady
state Riccati equations associated with a LTR approach to design,
where the closed-loop state feedback dynamics are very fast. Here,
since there exists a bound on the rate of variation of the physical
parameter and the closed-loop feedback dynamics associated with

Acont (k) := A(r) — B(s)T ™' B' (k) Z(k) 12)
are stable for each fixed , and have modes considerably faster than
the rate of parameter variations, mean that the closed-loop dynamics
associated with Acont (A(%)) are also stable. This stability result fol-
lows from the fact that a system with time-varying parameters is stable
if it is stable for all fixed values of the parameters and the parameters
vary much more slowly than the system dynamics [24, Sec. IV.8]. Note
also that it is standard in LTR design to ensure that either the dynamics
associated with the state feedback law or those associated with the es-
timator are very fast; here, it is the dynamics associated with the state
feedback law, and this ensures that the overall closed-loop dynamics
obtained by using the controller based on feedback of a state estimate
are mainly dominated by the observer dynamics, which become a form
of target loop for the closed-loop dynamics. Of course, the LTR design
requires that the original system be minimum phase or stably invert-
ible.

In terms of the stability of the overall loop, the time-varying dy-
namics associated with the Kalman filter are stable under uniform con-
trollability and uniform observability assumptions, with stability not
being related to the speed of parameter variations [23]. The overall
closed-loop becomes stable when both the state feedback dynamics and
observer dynamics are stable. However, even if this gain scheduling de-
sign using loop transfer recovery works with fast parameter variation
there is still a computational problem where the cost of solving the RDE
online is concerned. A separate computational problem arises since an
infinite number of control AREs are to be solved. Next, we will show
how we can use a finite set of control AREs and express the observer
RDE solution using a simple formula for the transient solution of a con-
stant coefficient RDE, assuming its steady-state solution is known.

III. PROPOSED CONTROL SYNTHESIS

In this section, we shall first present an explicit formula that provides
the transient solutions of a constant coefficient RDE given its steady
state solution. Then, our proposed gain scheduling controller design is
presented utilizing the filtering transient RDE solutions that converge
to the predetermined stabilizing ARE solutions. This is aided by noting
that the RDE has piecewise constant coefficients and exploiting the
explicit formula.
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A. Explicit Formula for Transient Solution of the RDE

A controller design is postulated below in which the RDE coeffi-
cients are piecewise constant and take one of a known finite set of
values. Associated with each set of values, there is a steady-state solu-
tion of the RDE. We can also appeal to a result of [25], which proposes
an explicit formula for the transient solution of the RDE (when A(#),
C(t), R(t), and Q(t) are constant) computed using knowledge of its
value at the end of an interval and of the steady state solution; i.e., the
solution of the associated ARE. A dual filtering result below expresses
the transient solution using the result above.

Lemma 3: Consider the time-invariant case of the linear system in
(1) with constant matrices A, C, and constant design parameters () =
Q' =LL >0and R = R > 0, where (4, ) is detectable and
(A, L) is stabilizable. Let & = £’ > 0 be the stabilizing solution of
the associated ARE, A := (A—SC'R7'C) and let W satisty

WA + AW - CR™'C' =0. (13)

Then the transient solution of the RDE from any initial value (o) =
J = J' > 0 to the stabilizing solution & with 7 := t — to, 7 > 0 can
be obtained via

E(T):i+eAT
X {(J—i){[+ (W—e?ve’7) (.J—i)}_l}ef“’*. (14)

Proof: The proof is straightforward following the proof of the

dual theorem in [25]. [ ]

Using Lemma 3, one can solve the RDE on an interval applicable to

one operating point of the system by using a stored steady state solution

value, the actual solution value immediately before the switching of
operating point, and the transient formula (14).

B. Proposed Design Procedure

The gain scheduling controller for the LPV system of interest in (1)
with the time-varying system parameter A(#) requires the following
assumptions and offline calculations:

a) Suppose a set of N operating points Agper =
{A1,As,...,An} C Apox are identified a priori and
that for each A; € Aqper there is an associated open subset
Zi C Apox such that A; € Z; and [JY | i = Apox. Let the set
of all subsets be Eoper 1= {Z1,Z2,...,EN}.

b) Choose design parameters ' € R™*™, Q; € R"*", R; € RF**
foreach¢ € {1,...N}.

c) Ateach A; € Agper, assume that the corresponding “frozen”
form of the given system is a minimal realization with 4; :=
A(A;), B; := B(A;), C; := C(A;) such that (A;, B;) is con-
trollable and (A;, C;) is observable Vi € {1,... N }.

d) For each operating point A; € Agper, determine a stabilizing
solution £, of the observer ARE for the corresponding values
A;, C;, Qi, R;. Let the collection of all stabilizing solutions be
ioper = {il, ig, e iN}.

The proposed procedure below determines the feedback gain
G :{1,...N} — R™** and observer gain H : RT — R*** for
the observer/state feedback controller in (7), as well as a sequence of
switching times {#;} ., and anindex functionc : RT — {1,...N}
Note that the feedback gain is completely determined by the index
function as G(A.4)) via (9).

Procedure 4: The feedback gain GG, observer gain H for the system
in (7), a sequence of switching times {t; }, ¢z, - and an index function
c are determined.

a) Initialize j = 0, ¢ty = 0, and choose (o) such that A(ty) €

E(tg) and set X(to) = Eu(io)'
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b) Suppose at time ¢, A(t) is not sampled again until not-neces-
sarily known time #4. Set ¢(7) = ¢(t) V7 € (¢,t1), compute
E(7)V7 € [t.t4) using the transient formula (14) with the ini-
tial value J = X(t) and the steady state! value & = X.(). Set
the observer gain Vr € [¢,71) using

H(r):=3(1)Cleyy (Reny) - (15)

¢) Suppose we sample A(#) at time ¢, and that we sampled last at

t_ IfA(t) € 2.y, sete(t) = e(t_). Otherwise (i.e., A(t) &

Ze(¢_))s choose ¢(t) such that A(t) € 2., sett;41 = ¢, and
increment j = j + 1.

d) Go to step ii. with next sampling time.

Note that at ¢ the knowledge of the next sampling time ¢ is not
required, meaning that ¢, and thus ¥ and G, may remain fixed until the
next switching time ¢;+,. From Procedure 4

o(t) = c(t;) VtE[t;.t;41). Vj € Zy. (16)

Here, we assume that we can sample A continuously, and hence Pro-
cedure 4 further yields
vt e RY

At) € Ec(t) an

and
tior =inf {t > t;|A(t) € B} Vi€EZT. (18)
Since the regions =; C Apox are open and A(t), B(t),C(t) are
bounded Vt € R, we have

36; > Osuch that tjy1 —t;, > 6; VjezZt.

‘We then define

be == inf (t;41 —t;). (19)
jezt

From the uniform boundedness of A, B, C, the openness of =,;Vi,
and the fact that NV is finite, it follows that 6. > 0, facilitating the
proof of uniform controllability in Lemma 6.

Remark 5: The solution of the RDE associated with a controller is
normally computed backward in time whereas the solution of an RDE
associated with an observer is computed forward in time. Thus, two
different methods are used to obtain H (¢) and G(x).

In using the proposed design, there is no need to compute the so-
lution of the actual RDE online. One only needs two simple online
computations to determine the current subset =; € ZEqper for the mea-
sured system parameter A (#) and schedule ¥(#) via the pre-determined
values ¥, € ., and the transient formula of Lemma 3. In addition,
the set of state feedback gains is pre-computed, and the appropriate
gain is determined by the current subset =;.

IV. STABILITY ANALYSIS OF PROPOSED GAIN SCHEDULING DESIGN

Given the nature of the proposed design and for the pedagogical ben-
efit, the stability of the proposed design will be verified in the following
three regimes. First, the fixed-point case, where the plant and controller
both assume a common constant value of A; for A(¢), will be exam-
ined. Second, we consider the transition case when the plant parameter
switches among a finite set Aqper and the controller is ‘tuned’ to the
plant parameter. Last, we consider the parameter-varying case when
the plant and controller do not assume in general the same value for
A(t) within the same subset Z; at other than isolated times. The plant
parameter is A (), and the controller parameter is A; for some ¢, albeit

INote that it would not be expected that the steady state value was attained.
If t4 —t is sufficiently large, the steady state value is approached but in general
it will not be exactly attained at time ¢ .
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with the time-varying observer gain depending on the past history of
the set of A; € Aoper encountered. The final case corresponds to the
procedure we have presented; its understanding is aided by considering
the simpler cases first.

A. Fixed-point Analysis

Consider the system of interest in (1) and the proposed controller in
(7) with a constant system parameter A(¢), say A;, Vt. The plant and
controller will thus be time-invariant. The controller can be designed
via normal LQG methods (albeit using LTR) ensuring the closed-loop
stability. Instead of the observer gain H (¢) in (18) within the controller
being determined via the solution of a RDE, it is a constant H; :=

(R)™'S,CL 2 € Soper.

B. Finite Parameter Set Analysis

Suppose that the underlying plant parameter value A(¢) switches
among a finite set of values drawn from the set Aoper, and that the state
feedback gain incorporated in the controller switches instantaneously
between corresponding values. Suppose also that the dynamics associ-
ated with state feedback are considerably faster than the average rate
of parameter variation, so that we only need to focus on the stability of
the observer dynamics. The combination of the observer and the state
feedback defines the overall closed-loop system. We earlier described
how the observer gain can be calculated using the known ARE solu-
tions and the formula generating the Riccati equation solution using
these known ARE solutions. We need to show that the resulting ob-
server dynamics are stable. For this purpose, it is sufficient (and indeed
virtually necessary) to show uniform controllability and observability.

Lemma 6: Consider the system in (1) and suppose it forms the min-
imal realization (A;, B;, C;) at each operating point A; € Aper. That
is A; = A(AZ’), B; = B(A,’,), C; = C(Ai) and (AL‘, BZ) is control-
lable and (A;, C;) is observable Vi € {1,..., N}. Let ¢ be defined
as in Section III-B, A(t) = A, Vt, and B(t) = B Vt. Then,
(A(t), B(t)) is uniformly controllable.

Proof: Let 6. > 0 be defined as in (19) such that #,; — ¢; >
5. ¥j € Z7T, and consider an arbitrary time interval of length &,
[s — b6c,5). We need to show that Ja., S. > 0 such that a.] <
M(s — 6c,8) < 3.1 holds Vs € R. It follows from 0 < 6. <
oo and uniformly boundedness of A and 5 that 35. > 0 such that
M(s — be,s) < 3.I,¥s € R. Since (A;, B;) is controllable, if we
consider a time interval that does not contain a switching time (i.e., for
s,t,35 € Z1 for whicht; < s < t < t;11, with ¢(¢;) = ) and if
(6c/2) <t —s < b, then Ja; > 0 such that M (s,t) > a;I. Let
Q. = min; ;.

An interval of the form [s — §., s) will intersect either one interval
or two adjacent intervals of the form [¢;,¢;41). If one, then we have
already established &I < M (s — é., s). If two, then taking ¢; as the
left point on the rightmost interval, we can express the Gramian as

M(s—b.,5)=

/<I>(s,t)Bu(trl)B’c(tjil)@/(s,t)(lt

5—8.
s

+/<I>(s,t)Bc(tj)B;(tj)@’(s,t)dt

tj

. Al s—t,;
:(\I:Ac(tj)('g*t])] [\I(S _ (Sc,f])o[ (‘(‘f,j)( i]):|

+ M(t;,s).
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Noting that either s — t; > (6./2) ort; — (s — 6.) > (6./2),

a.l < M(s—6.,5)Vs€ER

where

min

~ . Aw Alw
Qe = Q¢ -min K 1, Amin [e e ’“]
i,0<w< e

and Amin[-] denotes the minimum eigenvalue, it follows that
(A(t), B(t)) is uniformly controllable.

Similarly, the dual property of uniform observability also holds. Be-
cause the given system is uniformly controllable and uniformly observ-
able, the dynamics of the observer are stable. Hence, by the Separation
Theorem [26], the overall system is stable.

C. Continuously Varying Parameter Analysis

Suppose that the parameter A(¢) is continuously varying. The con-
troller, however, is determined using just the knowledge of the set, say
E, € Eoper at each time in which A(#) lies. At any instance of time,
this set determines a nominal parameter value in Aqper, Say A;, which
is used to set the state-feedback gain part of the controller. The ob-
server gain is however determined from the transient Riccati equation,
the solution of which depends on the past values as well as the current
value of A;. We earlier established the stability of an interconnection
of a controller with a plant with piecewise constant A .(;y, and can ap-
peal to classical results in Lyapunov theory on the robust stability of
systems undergoing a perturbation. By rearranging (1) with A(#) and
(7) with G(Acpy) in (9) and H (t) in (15), the full observer-plant ar-
rangement with 7 (¢) = (0 can be written as

44cont (Ac(i)) BL([)G (Au(t))
0 Ac(t) — H(t)Cc(t)
0]X(t)

X(t)=

y(t)=[Cey

X (1) +A(X. 1)
(20)

where e(t) = x(t) — 2(t), X(t) := [z(t)e(t)]', c(t) denotes the
index function defined in Section ITI-B and Acont (%) denotes the con-
trol system in (12) and

SA(t) —(SB(t)G (Ac(f)) 0
SA(t) =6 B()G (Aer))—H (1)6C (1) 6B(t)G (M)
x X ()

reflects the difference between the constant model with Ay and the
true plant parameter A(¢) with

A(X,t) =

(Srl(t) = rl(A(t)) - x—lc(t)
(SB(I‘) = B(A\(f)) - Bc(t)
5C(t) :=C(A®)) — Oc(t)-

In fact, (20) can be classified as a perturbed system, and there exist
several standard stability analysis techniques for this class of system
[27], [28]. In particular, we borrow a theorem from [27] where the per-
turbed system is analyzed with an application of Lyapunov’s methods.

Theorem 7 ([27]): Consider an auxiliary system

X(t) = f(X.1) @1)

and a perturbed system

X(t) = f(X,1) + A(X.1). (22)

If there exist a, B > 0 such that solutions of the auxiliary system
(21) satisty

IX(Oll, < BlIXoll,e ) ve >t

(23)
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for all? initial conditions to, Xo, or equivalently, if there exist
¢1,¢2,¢3,¢4 > 0 and a function v(X,¢) such that solutions of the
auxiliary system (21) satisfy

ctlIX 3 <€ o(X.1) < call X
i< - eall X3

ov
| 7| e ey
and if there further exists ¢ € (0, 1) such that
1— -2 || X||-
JACE ), < S 0eslX e3)

Cq

another set of positive constants exist such that solutions of (22) satisfy
(23) or equally (24).

The results above is now used to prove asymptotic stability of the
observer-plant arrangement in (20). Given that the closed-loop of the
fixed-point system with a A; € Agper is exponentially stable, the
appropriate constants can be found to satisfy (23), and equally, there
exist appropriate constants and a Lyapunov function v(X, ¢) that sat-
isfies (23) or (24). Since the system parameter A(t) is to vary within
a bounded subset Z; € Eqper, 8A(t), §B(t), and 6C(t) are bounded
Vt, the perturbation of the system A (X, ¢) is also bounded. Note that
from (17)

sup ||A(t) — A HOO < max diam(Z;)
t k2

where diam(S) = sup 4 e [|A — Bl|~. For a fixed bound, one can
choose a number of regions, [V, large enough to place the associated
regions =Z; such that the above sup is within that given bound. Given
the uniformly continuous dependence of the entries of A(X,¢) on the
parameter A(#), it further follows that for a ¢ € (0, 1), a large enough
N and associated regions =; can be chosen such that (25) is satisfied.
By choosing a large N, A(X, t) can be restricted to satisfy the condi-
tion (25) and hence Theorem 7 provides the asymptotic stability of the
closed-loop observer dynamics.

V. NUMERICAL EXAMPLES

Let us consider the example in [18]. The system is
#(t) = A (A1) x(t) + Bu(t)
y(t) = Ca(t)
with 2:(¢9) = [0 0 0 0 0]" (for convenience)

0 0 1 00

0 0 0lcosA—-1 1 0
A(A)y= [0 100 0 0 0
0 -100 0 0 1
0 0 10cos A 0 0
B=[0 0 0 0 17,

C=[1 0 0 0 0] (26)
where —1 < A(t) £ 1 € R. To observe clear switchings with
less computations N = 4, and to satisfy (25), the four equally
spaced operating points are chosen as {—1,—1/3,1/3,1} to form
Aoper. In fact, as long as (25) is satisfied, N can be arbitrarily
chosen. The design parameters are I' = 107'*, R = 107%, and
L = 1]0.011426,0.044311,0.388490, —0.062159,0.918510]" as
in [18]. Given the plant time constants 7 = .01, the time-varying

2A variation in [27] assumes a compact region for X, with minor modifica-
tions to the theorem criterion.
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Fig. 1. Step responses for the design in [18] versus our proposed (4 equally
spaced operating points) design.

parameter is chosen with relatively fast variations as A(t) = sin(3¢)
in order to compare the proposed design against that in [18], which is
faster than the one used in [18].

The step responses (a step at t = 0.3 s) obtained by solving the RDE
directly via [18] with A(t) and via our proposed design with A ;) are
shown in Fig. 1. For the first 2.5 seconds both outputs behave indis-
tinguishable with an overshoot just after the step and the exponential
convergence as t — oo, and our new design still satisfies (25). Thus,
the stability of the closed loop dynamics is ensured. As NV is increased
with more equally spaced operating points, more computation is re-
quired, but similar performance and stability are observed for the given
A(t). Several other simulations with various mixtures of slow and fast
time-varying physical parameters reveal that our proposed design—in
comparison to that in [18] which solves the RDE directly—attains sim-
ilar level of stability and performance.

VI. CONCLUSION

We have proposed a modification—including computational simpli-
fication—of the gain scheduling design of [18]. The design of [18] of-
fers the advantage of permitting fast (though not infinitely fast) param-
eter variation within the set of approaches to gain-scheduled design.
Such an approach may mean that a design cannot be achieved, or may
result in restrictive designs. Note that LMI approaches have been sug-
gested to cope with arbitrarily fast time variation, see, e.g., [8], but such
schemes may lead to too conservative designs if the variation is not very
fast.

The disadvantage of the approach in [18] is that it requires for its im-
plementation the possible solution of asymptotic Riccati equations for
an infinite number of different parameter values, and the on-line solu-
tion of a RDE with time-varying coefficient matrices. Our modification
addresses this computational burden. Only a finite number of AREs is
needed to be solved offline, and the RDE solution can be formed using
table look-up together with simple matrix operations. Our modifica-
tion provides, in a sense, an approximation of the design in [18] while
similar performance can be achieved with what might in advance be
conjectured as quite a rough approximation.

REFERENCES

[1] J. S. Shamma and M. Athans, “Analysis of nonlinear gain scheduled
control systems,” IEEE Trans. Autom. Control, vol. 35, no. 8, pp.
898-907, 1990.

[2] D.J. Leith and W. E. Leithead, “Survey of gain-scheduling analysis
and design,” Int. J. Contr., vol. 73, no. 11, pp. 1101-1025, 2000.

[3] F. Wu and K. Dong, “Gain-scheduling control of LFT systems using
parameter-dependent Lyapunov functions,” Automatica, vol. 42, no. 1,
pp. 39-50, 2006.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 10, OCTOBER 2012

[4] P. Apkarian and R. J. Adams, “Advanced gain-scheduling techniques
for uncertain systems,” I[EEE Trans. Contr. Syst. Technol., vol. 6, no. 1,
pp- 21-32, 2002.

[5] C. W. Scherer, “LPV control and full block multipliers,” Automatica,
vol. 37, no. 3, pp. 361-375, 2001.

[6] G. Chesi, A. Garulli, A. Tesi, and A. Vicino, “Polynomially param-
eter-dependent Lyapunov functions for robust stability of polytopic
systems: An LMI approach,” IEEE Trans. Autom. Control, vol. 50, no.
3, pp. 365-370, 2005.

[7] B. D. O. Anderson and A. Dehghani, “Challenges of adaptive con-
trol-past, permanent and future,” Ann. Rev. Contr., vol. 32, no. 2, pp.
123-135, Dec. 2008.

[8] W. Rugh and J. S. Shamma, “Research on gain scheduling,” Auto-
matica, vol. 36, pp. 1401-1425, 2000.

[9] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output
Properties. New York: Academic, 1975.

[10] A. Nemirovskii, “Advances in convex optimization: Conic program-
ming,” in Proc. Int. Congress of Math. (Plenary Lecture), Madrid,
Spain, 2006, vol. 1, pp. 413-444.

[11] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, “Linear matrix
inequalities in system and control theory,” SIAM, vol. 15, 1994.

[12] P. Apkarian and P. Gahinet, “A convex characterization of gain-sched-
uled 9 o, controllers,” IEEE Trans. Autom. Control, vol. 40, no. 5, pp.
853-864, May 1995.

[13] A. Packard, “Gain scheduling via linear fractional transformations,”
Syst. Contr. Lett., vol. 22, no. 2, pp. 79-92, 1994.

[14] G. Becker, A. Packard, D. Philbrick, and G. Balas, “Control of para-
metrically dependent linear systems: A single quadratic Lyapunov ap-
proach,” in Proc. Amer. Contr. Conf., 1993, pp. 2795-2799.

[15] F. Wu, X. H. Yang, A. Packard, and G. Becker, “Induced £>-norm
control for LPV systems with bounded parameter variation rates,” Int.
J. Robust Nonlin. Contr., vol. 6, no. 9-10, pp. 983-998, 1996.

[16] E. Feron, P. Apkarian, and P. Gahinet, “Analysis and synthesis of ro-
bust control systems via parameter-dependent Lyapunov functions,”
IEEE Trans. Autom. Control, vol. 41, no. 7, pp. 1041-1046, 1996.

[17] F. Blanchini, D. Casagrande, S. Miani, and U. Viaro, “Stable LPV re-
alization of parametric transfer functions and its application to gain-
scheduling control design,” IEEE Trans. Autom. Control, vol. 55, no.
10, pp. 22712281, Oct. 2010.

[18] J. S. Shamma and M. Athans, “Gain scheduling: Potential hazards
and possible remedies,” I[EEE Contr. Syst. Mag., vol. 12, no. 3, pp.
101-107, 1992.

[19] J. C. Doyle and G. Stein, “Multivariable feedback design: Concepts for
a classical/modern synthesis,” IEEE Trans. Autom. Control, vol. 26, pp.
4-16, Feb. 1981.

[20] G. Stein and M. Athans, “The LQG/LTR procedure for multivariable
feedback control design,” IEEE Trans. Autom. Control, vol. 32, pp.
105-114, Feb. 1987.

[21] B. D. O. Anderson and J. B. Moore, “Detectability and stabilizability
of discrete-time linear systems,” SIAM J. Contr. Optimiz., vol. 19, no.
1, pp. 20-32, 1981.

[22] J. S. Shamma and M. Athans, “Gain scheduling: Possible hazards and
potential remedies,” IEEE Contr. Syst. Mag., pp. 101-107, Jun. 1992.

[23] R. S. Bucy and P. D. Joseph, Filtering for Stochastic Processes With
Applications to Guidance. New York: Wiley, 1968.

[24] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output
Properties. New York: Academic , 1975.

[25] F. M. Callier, J. Winkin, and J. L. Willems, “On the exponential con-
vergence of the time-invariant matrix Riccati differential equation,” in
Proc. 31st Conf. Decision Contr., Tucson, AZ, 1992.

[26] B.D. O. Anderson and J. B. Moore, Linear Optimal Control.
wood Cliffs, NJ: Prentice-Hall, 1971.

[27] N. N. Krasovskii, Stability Of Motion Krasovskii.
Stanford Univ. Press, 1963.

[28] W. Hahn, Theory and Application of Liapunov’s Direct Method. En-
glewood Cliffs, NJ: Prentice-Hall, 1963.

Engle-

Stanford, CA:

2639

Consensus of Multi-Agent Networks With Aperiodic
Sampled Communication Via Impulsive Algorithms
Using Position-Only Measurements

Zhi-Wei Liu, Zhi-Hong Guan, Xuemin Shen, Fellow, IEEE, and
Gang Feng, Fellow, IEEE

Abstract—In this technical note, an impulsive consensus algorithm is
proposed for second-order continuous-time multi-agent networks with
switching topology. The communication among agents occurs at sampling
instants based on position only measurements. By using the property of
stochastic matrices and algebraic graph theory, some sufficient conditions
are obtained to ensure the consensus of the controlled multi-agent network
if the communication graph has a spanning tree jointly. A numerical
example is given to illustrate the effectiveness of the proposed algorithm.

Index Terms—Aperiodic sampled information, consensus, impulsive al-
gorithms, multi-agent networks.

1. INTRODUCTION

It is well known that the consensus problem of multi-agent net-
works has been widely investigated due to its important applications,
including coordinated control of mobile robots, synchronization of
dynamical networks, distributed Kalman filtering in sensor networks,
load balancing in parallel computers, etc [1]-[4]. Many results have
been reported for multi-agent networks with different special features,
such as time delay [5], switching topology [6], asynchronous algo-
rithms [4], [7], nonlinear algorithms [8], [9], quantized data [4], noisy
communication channel [10], second-order model [11], [12], optimal
consensus [13], etc.

Most of the existing works on continuous-time multi-agent networks
assume continuous communication among agents. However, in many
real-world networks, communication among agents may occur peri-
odically rather than continuously. Therefore, it is more practical to
consider continuous-time multi-agent networks with communication
at sampling instants. In [16]-[21], consensus problems were addressed
for continuous-time multi-agent networks with sampled-data setting.
But, all those works assume an equidistant sampling interval, and those
results cannot be directly applied to systems whose length of sampling
interval is time-varying or uncertain. Consequently, it is desirable to
study the consensus problem of multi-agent networks with aperiodic
sampling interval. In addition, the existing works often assume that
each agent can obtain the information of its full states. However, in
some cases, partial states may be unavailable because of technology
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