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APPENDIX

SKETCH OF PROOF OF THEOREM 2

Using the forward completeness characterization given in Corollary
2.3 in [8], we have that Assumption 6 is equivalent to the following.
There exist ��� ��� �� � � and � � �� such that, for any �� �
� � ��� �� �� � �

� �� ��

� , along solutions to (6): ������ � ������

�������� � ������� �� ���� ���� � � for all � � �� � �. The proof then
immediately follows from the proof of Theorem 1 by making 	� only
depends on ���� (and not ����� ����) and setting 
�� � �. We then obtain
that � is equal to 0 and appropriate � and 
 can be deduced.
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On the Nearest Quadratically Invariant
Information Constraint

Michael C. Rotkowitz and Nuno C. Martins

Abstract—Quadratic invariance is a condition which has been shown
to allow for optimal decentralized control problems to be cast as convex
optimization problems. The condition relates the constraints that the
decentralization imposes on the controller to the structure of the plant. In
this technical note, we consider the problem of finding the closest subset
and superset of the decentralization constraint which are quadratically
invariant when the original problem is not. We show that this can itself
be cast as a convex problem for the case where the controller is subject
to delay constraints between subsystems, but that this fails when we only
consider sparsity constraints on the controller. For that case, we develop
an algorithm that finds the closest superset in a fixed number of steps, and
discuss methods of finding a close subset.

Index Terms—Decentralized control, linear fractional transformation
(LFT), quadratic invariance.

I. INTRODUCTION

The design of decentralized controllers has been of interest for a
long time, as evidenced in the surveys [1], [2], and continues to this
day with the advent of complex interconnected systems. The coun-
terexample constructed by H.S. Witsenhausen in 1968 [3] clearly illus-
trates the fundamental reasons why problems in decentralized control
are difficult.

Among the recent results in decentralized control, new approaches
have been introduced that are based on algebraic principles, such as the
work in [4]–[6]. Very relevant to this technical note is the work in [4],
[5], which classified the problems for which optimal decentralized syn-
thesis could be cast as a convex optimization problem. Here, the plant
is linear, time-invariant and it is partitioned into dynamically coupled
subsystems, while the controller is also partitioned into subcontrollers.
In this framework, the decentralization being imposed manifests itself
as constraints on the controller to be designed, often called the infor-
mation constraint.

The information constraint on the overall controller specifies what
information is available to which controller. For instance, if informa-
tion is passed between subsystems, such that each controller can access
the outputs from other subsystems after different amounts of transmis-
sion time, then the information constraints are delay constraints, and
may be represented by a matrix of these transmission delays. If instead,
we consider each controller to be able to access the outputs from some
subsystems but not from others, then the information constraint is a
sparsity constraint, and may be represented by a binary matrix.

Given such pre-selected information constraints, the existence of a
convex parameterization for all stabilizing controllers that satisfy the
constraint can be determined via the algebraic test introduced in [4],
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[5], which is denoted as quadratic invariance. In contrast with prior
work, where the information constraint on the controller is fixed before-
hand, this technical note addresses the design of the information con-
straint itself. More specifically, given a plant and a preselected infor-
mation constraint that is not quadratically invariant, we give explicit al-
gorithms to compute the quadratically invariant information constraint
that is closest to the preselected one. We consider finding the closest
quadratically invariant superset, which corresponds to relaxing the pre-
selected constraints as little as possible to get a tractable decentralized
control problem, which may then be used to obtain a lower bound on the
original problem, as well as finding the closest quadratically invariant
subset, which corresponds to tightening the preselected constraints as
little as possible to get a tractable decentralized control problem, which
may then be used to obtain upper bounds on the original problem.

We consider the two particular cases of information constraint out-
lined above. In the first case, we consider constraints as transmission
delays between the output of each subsystem and the subcontrollers
that are connected to it. The distance between any two information con-
straints is quantified via a norm of the difference between the delay ma-
trices, and we show that we can find the closest quadratically invariant
set, superset, or subset as a convex optimization problem.

In the second case, we consider sparsity constraints that represent
which controllers can access which subsystem outputs, and represent
such constraints with binary matrices. The distance between infor-
mation constraints is then given by the hamming distance, applied
to the binary sparsity matrices. We provide an algorithm that gives
the closest superset; that is, the quadratically invariant constraint that
can be obtained by way of allowing the least number of additional
links, and show that it terminates in a fixed number of iterations.
For the problem of finding a close set or subset, we discuss some
heuristic-based solutions.

Paper organization: Besides the introduction, this technical note
has six sections. Section II presents the notation and the basic con-
cepts used throughout the technical note. The delay and sparsity con-
straints adopted in our work are described in detail in Section III, while
their characterization using quadratic invariance is given in Section IV.
The main problems addressed in this technical note are formulated and
solved in Section V. Section VI briefly notes how this work also ap-
plies when assumptions of linear time-invariance are dropped, while
conclusions are given in Section VII.

II. PRELIMINARIES

Throughout the technical note, we adopt a given causal linear time-
invariant continuous-time plant � partitioned as follows:

� �
��� ���

��� �
�

Here, � � �
�� �� ���� �� �
� , where ����

� denotes the set of ma-
trices of dimension � by �, whose entries are proper transfer functions
of the Laplace complex variable �. Note that we abbreviate � � ���,
since we will refer to that block frequently, and so that we may refer to
its subdivisions without ambiguity.

Given a causal linear time-invariant controller � in �
� ��
� , we

define the closed-loop map by

���	��
���
� ��� � �����
 ���������

where we assume that the feedback interconnection is well posed. The
map ���	�� is also called the (lower) linear fractional transforma-
tion (LFT) of � and � .

We suppose that there are �� sensor measurements and �	 control
actions, and thus partition the sensor measurements and control actions
as

� � �


� � � � �



�





 � 



� � � � 




�




and then further partition � and � as

� �

��� � � � ���

...
...

�� � � � � �� �

� �

��� � � � ���

...
...

�� � � � � �� �

�

Given � � ���, we may write it in term of its columns or in a
vectorized form as

� � ��� � � � ���	 �	
���
���
� �



� � � � �



�




�

Further notation will be introduced as needed.

A. Delays

We define �	�
���� for a causal operator as the smallest amount
of time in which an input can affect its output. For any causal linear
time-invariant operator � � ��� � ��� , its delay is defined as

�	�
����
���
� ��� �� � � 	 ���� 
� �	 � � ����	 � � ���	

��	�	 ���� � �	 � � ��

and if� � �, we consider its delay to be infinite. Here��� is the domain
of � , which can be any extended �-normed Banach space of functions
of non-negative continuous time with co-domain in the reals.

B. Sparsity

We adopt the following notation to streamline our use of sparsity
patterns and sparsity constraints.

1) Binary Algebra: Let � ��	 �� represent the set of binary num-
bers. Given �	 � � , addition and multiplication yield ��� � � �� �
� � � � � � � � � and � � � � � � � � � � � � � � � � �.

Given �	� � ���, we say that � � � holds if and only if
��
 � ��
 for all �	 � satisfying � � � � � and � � � � �.

Given �	 �	 � � ���, these definitions lead to the following im-
mediate consequences:

� � � � � 
 � � � (1)

� � � � � � � � � (2)

� � �	 � � � � � � �� (3)

Given � � ���, we use the following notation to represent the
total number of nonzero entries in � :

� ���
���
�

�

���

�


��

��
 	 � � ���

with the sum taken in the usual way.
2) Sparsity Patterns: Suppose that ���	 � ��� is a binary ma-

trix. The following is the subspace of ����
� comprising the transfer

function matrices that satisfy the sparsity constraints imposed by ���	

��
��	����	�
���
� � � ����

� 	��
���� � � ��� 
�� �	 �

��
� ��
����	
�
 � � ��� 
����� 
�� � � �
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Conversely, given � � ����
� , we define ����������

���
	 ����,

where ���� is the binary matrix given by

�
���
�� 	


� if ������� 	 
 for almost all � �
�� otherwise

for � � ��� � � � ���� � � ��� � � � � ��.

III. OPTIMAL CONTROL SUBJECT TO INFORMATION CONSTRAINTS

In this section, we give a detailed description of the two main types
of information constraints adopted in this technical note, namely, delay
constraints and sparsity constraints.

A. Delay Constraints

Consider a plant comprising multiple subsystems which may affect
one another subject to propagation delays, and which may communi-
cate with one another with given transmission delays. In what follows,
we give a precise definition of these types of delays.

1) Propagation Delays: For any pair of subsystems � �
��� � � � � �	� and � � ��� � � � � �
�, we define the propagation
delay 	�� as the amount of time before a controller action at subsystem
� can affect an output at subsystem �, as such

	��
���
	 
�����
����

2) Transmission Delays: For any pair of subsystems � and 
, we de-
fine the (total) transmission delay ��� as the minimum amount of time
before the controller of subsystem � may use outputs from subsystem

. Given these constraints, we can define the overall subspace of admis-
sible controllers � such that � � � if and only if the following holds:


��������� � ���

for all � � ��� � � � � �
�� 
 � ��� � � � � �	�.

B. Sparsity Constraints

We now introduce the other main class of constraints we will con-
sider in this technical note, where each control input may access certain
sensor measurements, but not others.

We represent sparsity constraints on the overall controller via a bi-
nary matrix ���� � � �� . Its entries can be interpreted as follows:

�
���
�� 	

�� if control input �
may access sensor measurement 
,


� if not

for all � � ��� � � � � �
�� 
 � ��� � � � � �	�.
The subspace of admissible controllers can be expressed as

� 	 �������������

From the quadratic invariance test introduced in [4], [5], we find that
the relevant information about the plant is its sparsity pattern 
���,
obtained from



��� 	 ��������
�

where 
��� is interpreted as follows:



���
�� 	

�� if control input �
affects sensor measurement �,


� if not

for all � � ��� � � � � �	�� � � ��� � � � � �
�.

C. Optimal Control Design Via Convex Programming

Given a generalized plant � and a subspace of appropriately di-
mensioned causal linear time-invariant controllers �, the following is
a class of constrained optimal control problems:

��������



� ������ �

������� �� � ���������� �

� � �� (4)

Here ��� is any norm on the closed-loop map chosen to encapsulate the
control performance objectives. The delays associated with dynamics
propagating from one subsystem to another, or the sparsity associated
with them not propagating at all, are embedded in � . The subspace
of admissible controllers, �, has been defined to encapsulate the con-
straints on how quickly information may be passed from one subsystem
to another (delay constraints) or whether it can be passed at all (sparsity
constraints). We call the subspace � the information constraint.

Many decentralized control problems may be expressed in the form
of problem (4), including all of those addressed in [4], [7], [8]. In this
technical note, we focus on the case where � is defined by delay con-
straints or sparsity constraints as discussed above.

This problem is made substantially more difficult in general by the
constraint that � lie in the subspace �. Without this constraint, the
problem may be solved with many standard techniques. Note that the
cost function �������� is in general a non-convex function of � . No
computationally tractable approach is known for solving this problem
for arbitrary � and �.

IV. QUADRATIC INVARIANCE

In this section, we define quadratic invariance, and we give a brief
overview of related results, in particular, that if it holds then convex
synthesis of optimal decentralized controllers is possible.

Definition 1: Let a causal linear time-invariant plant, represented
via a transfer function matrix 
 in �

� ��
� , be given. If � is a subset

of �
� ��
� then � is called quadratically invariant under 
 if the

following inclusion holds:

�
� � � ��� ���� � ��

It was shown in [4] that if � is a closed subspace and � is quadrat-
ically invariant under 
, then with a change of variables, problem (4)
is equivalent to the following optimization problem:

��������
�

��� � ������

������� �� � � �	�

� � � (5)

where ��� ��� �� � �	�. Here�	� is used to indicate that ��, ��,
�� and � are proper transfer function matrices with no poles in �

(stable).
The optimization problem in (5) is convex. We may solve it to find

the optimal�, and then recover the optimal� for our original problem
as stated in (4). If the norm of interest is the 	�-norm, it was shown in
[4] that the problem can be further reduced to an unconstrained optimal
control problem and then solved with standard software. Similar results
have been achieved [5] for function spaces beyond 
� as well, also
showing that quadratic invariance allows optimal linear decentralized
control problems to be recast as convex optimization problems.
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The main focus of this technical note is thus characterizing informa-
tion constraints � which are as close as possible to a pre-selected one,
and for which � is quadratically invariant under the plant �.

A. QI—Delay Constraints

For the case of delay constraints, it was shown in [9] that a necessary
and sufficient condition for quadratic invariance is

��� � ��� � ��� � ��� (6)

for all �� � � ��� � � � � ���, and all 	� 
 � ��� � � � � ���.
Note that it was further shown in [9] that if we consider the typical

case of � subsystems, each with its own controller, such that � � �� �
��, and if the transmission delays satisfy the triangle inequality, then
the quadratic invariance test can be further reduced to the following
inequality:

��� � ��� (7)

for all �� 	 � ��� � � � � ��; that is, the communication between any two
nodes needs to be as fast as the propagation between the same pair of
nodes.

B. QI—Sparsity Constraints

For the case of sparsity constraints, it was shown in [4] that a neces-
sary and sufficient condition for quadratic invariance is

�
���
�� �

���
�� �

���
�� ���

���
�� � � (8)

for all �� � � ��� � � � � ���, and all 	� 
 � ��� � � � � ���.
It can be shown that this is equivalent to Condition (6) if we let

��� �
�� if ����

�� � �

�� if ����
�� � �

(9)

for all 
 � ��� � � � � ���, and all � � ��� � � � � ���, and let

��� �
�� if ����

�� � �

�� if ����
�� � �

(10)

for all � � ��� � � � � ���, and all 	 � ��� � � � � ���, for any � 
 �,
the interpretation being that a sparsity constraint can be thought of as
a large delay, and a lack thereof can be thought of as no delay.

V. CLOSEST QI CONSTRAINT

We now address the main question of this technical note, which is
finding the closest constraints when the above conditions fail; that is,
when the original problem is not quadratically invariant.

A. Closest—Delays

Suppose that we are given propagation delays ������
� ��

������� and
transmission delays ������

� ��

�������
, and that they do not satisfy Con-

dition (6). The problem of finding the closest constraint set, that is,
the transmission delays �����

� ��

������� that are closest to ������
� ��

�������

while satisfying (6), can be set up as follows:

��	���
�
	

� ��
��� ����

�����
� �� ��� � ���� � ��� � ���� � �� 	� 
� ��

��� � �� � 
� �� (11)

This is a convex optimization problem in the new transmission de-
lays �. The norm is arbitrary, and may be chosen to encapsulate what-
ever notion of closeness is most appropriate. If the 1-norm is chosen,
corresponding to minimizing the sum of the differences in transmis-
sion delays, or the �-norm is chosen, corresponding to minimizing

the largest difference, then the problem may be cast as a linear pro-
gram (LP).

If we want to find the closest quadratically invariant set, which is a
superset of the original set, so that we may obtain a lower bound to the
solution of the main problem (4), then we simply add the constraint
��� 	 ���� for all 
� �, and the problem remains convex (or remains an
LP). Note that if we follow the aforementioned procedure and choose
the 1-norm, then the objective is equivalent to maximizing the total
delay sum �

���

�

��� ���.
Similarly, if we want to find the closest quadratically invariant set

which is a subset of the original set, so that we may obtain an upper
bound to the solution of the main problem (4), then we simply add
the constraint ��� � ���� for all 
� �, and the problem remains convex
(or remains an LP). For this procedure and if we choose the 1-norm,
then the objective is equivalent to minimizing the total delay sum

�

���

�

��� ���.

B. Closest—Sparsity

Now suppose that we want to construct the closest quadratically in-
variant set, superset, or subset, defined by sparsity constraints. We can
recast a pre-selected sparsity constraint on the controller ���� and a
given sparsity pattern of the plant ���� as in (9), (10), and then set up
problem (11). The only problem is that for the resulting solution to cor-
respond to a sparsity constraint, we need to add the binary constraints
��� � ��� �� for all 
� �, and this destroys the convexity of the problem.

1) Sparsity Superset: Consider first finding the closest quadratically
invariant superset of the original constraint set; that is, the sparsest
quadratically invariant set for which all of the original connections
�� 
 �� are still in place.

This is equivalent to solving the above problem (11) with ��� 	 ����
for all 
� �, and with the binary constraints, an intractable combinatorial
problem, but we present an algorithm which solves it and terminates in
a fixed number of steps.

We can write the problem as

��	���
�

�

� ���

�����
� �� ��
���

� 	 �

�
��� 	 � (12)

where additions and multiplications are as defined for the binary al-
gebra in the preliminaries, and where we will wish to use the informa-
tion constraint � � ���������. The objective is defined to give us
the sparsest possible solution, the first constraint ensures that the con-
straint set associated with the solution is quadratically invariant with
respect to the plant, and the last constraint requires the resulting set of
controllers to be able to access any information that could be accessed
with the original constraints. Let the optimal solution to this optimiza-
tion problem be denoted as �� � � �� .

Define a sequence of sparsity constraints ��� � � �� �� � �
given by

�� ��
��� (13)

���� ��� � ���
���

��� � � � (14)

again using the binary algebra.
Our main result will be that this sequence converges to��, and that it

does so in ���� � iterations. We first prove several preliminary lemmas,
and start with a lemma elucidating which terms comprise which ele-
ments of the sequence.

Lemma 2:

�� �

� ��

���

�
��������

�
����

�
� � � (15)
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Proof: For � � �, this follows immediately from (13). We then
assume that (15) holds for a given � � , and consider �� �. Then

�����

� ��

���

�
��������

�
����

�

�

� ��

���

�
��������

�
����

�
�
���

� ��

���

�
��������

�
����

�
�

All terms on the R.H.S. are of the form ��������������
�

for various
� � . Choosing � � � � �� � � gives � � � � �� � �, and
choosing � � �� � � with � � 	 � �� � � gives �� � � �

��� � �� � � � ��� � �� � ���� � �. This last term is the highest
order term, so we then have ���� � � ��

���
��������������

�

and the proof follows by induction.
We now give a lemma showing how many of these terms need to be

considered.
Lemma 3: The following holds for 
 � �	
�
�� 
��:

�
��������

�
����

�
�

	��

���

�
��������

�
����

�
� � � � (16)

Proof: Follows immediately from (1) for � � 
 � �. Now
consider � � 
, � � ��� � � � � 
��, 	 � ��� � � � � 
��. Then
���������������

�

�� � ����

�� ����
� 
 ����


 � �
���
� 
 � � �����

� 
 ����

 �

where the sum is taken over all possible �� � ��� � � � � 
�� and

� � ��� � � � � 
��. Consider an arbitrary such summand term that is
equal to 1, and note that each component term must be equal to 1.

If 
 � 
� (i), then by the pigeonhole principle either 	� s.t. �� � 	

(i.a), or 	�� �, with � 
� �, s.t. �� � �� (i.b). In case (i.a), we
have ����

�� ����
� 
 � � �����

� 
 ����

 � � �, or in case (i.b), we have

����
�� � � �����


 � ����
� 
 � � �����


 � � �. In words, we can bypass the
part of the path that merely took �� to itself, leaving a shorter path
that still connects �� � �� .

Similarly, if 
 � 
� (ii), then either 	� s.t. 
� � � (ii.a),
or 	�� � with � 
� � s.t. 
� � 
� (ii.b). In case (ii.a), we
have ����

�� ����
� 
 � � �����


 � � �, or in case (ii.b), we have
����
�� � � �����

� 
 ����

 � � � �����


 � � �, where we have now bypassed
the part of the path taking �
 to itself to leave a shorter path.

We have shown that, �� � 
, any non-zero component term of
��������������

�
has a corresponding non-zero term of strictly lower

order, and the result follows.
We now prove another preliminary lemma showing that the optimal

solution can be no more sparse than any element of the sequence.
Lemma 4: For �� � 	 �	 and the sequence ��� �
	 �	 �� � � defined as above, the following holds:

�
� � ��� � � � (17)

Proof: First, �� � �� � ���� is given by the satisfaction of the
last constraint of (12), and it just remains to show the inductive step.

Suppose that �� � �� for some � � . It then follows that:

�
� � �

�

�
���

�
� � �� � ���

���
���

From the first constraint of (12) and (2) we know that the left hand-
side is just ��, and then using the definition of our sequence, we get
�� � ����, and this completes the proof.

We now give a subsequent lemma, showing that if the sequence does
converge, then it has converged to the optimal solution.

Lemma 5: If �� � �� �� for some �� � , then �� � ��.
Proof: If �� � �� ��, then �� � �� � �� ������ ,

and it follows from (2) that�� ������ � �� . Since���� � ��

for all � � , it also follows that �� � �� � ���� for all � � .
Thus the two constraints of (12) are satisfied for �� .

Since �� is the sparsest binary matrix satisfying these constraints,
it follows that �� � �� . Together with Lemma 4 and (3), it follows
that �� � ��.

We now give the main result: that the sequence converges, that it
does so in ���� 
 steps, and that it achieves the optimal solution to our
problem.

Theorem 6: The problem specified in (12) has an unique optimal
solution �� satisfying

�� � �
� (18)

where �� � ����� 

 and where 
 � �	
�
�� 
��.

Proof: �� � � ��

���
��������������

�
from Lemma 2,

and then �� � 	��

���
��������������� from Lemma 3 since

�� � 
. Similarly, �� �� � � ��

���
��������������

�
�

	��

���
��������������

�
, and thus �� � �� �� and the result

follows from Lemma 5.
Delay superset (revisited): Suppose again that we wish to find

the closest superset defined by delay constraints. This can be found
by convex optimization as described in Section V-A. It can also be
found with the above algorithm, where ���� is replaced with a matrix
of the propagation delays, ���� with the given transmission delays,
and where the binary algebra is replaced with the ��	
��� algebra.
The �� matrices then hold the transmission delays at each iteration,
and with the appropriate inequalities flipped (since finding a superset
means decreasing transmission delays), the proofs of the lemmas and
the convergence theorem follow almost identically.

2) Sparsity Subset: We now notice an interesting asymmetry. For
the case of delay constraints, if we were interested in finding the most
restrictive superset (for a lower bound), or the least restrictive subset
(for an upper bound), we simply flipped the sign of our final constraint,
and the problem was convex either way. When we instead consider
sparsity constraints, the binary constraint ruins the convexity, but we
see that in the former (superset) case we can still find the closest con-
straint in a fixed number of iterations in polynomial time; however, for
the latter (subset) case, there is no clear way to “flip” the algorithm.

This can be understood as follows. If there exist indeces �� 
� �� 	 such
that ����

�� � ����
�
 � ����


� � �, but ����
�� � �; that is, indeces for

which condition (8) fails, then the above algorithm resets ����
�� � �. In

other words, if there is an indirect connection from �� � �� , but not a
direct connection, it hooks up the direct connection.

But now consider what happens if we try to develop an algorithm
that goes in the other direction, that finds the least sparse constraint
set which is more sparse than the original. If we again have indeces
for which condition (8) fails, then we need to disconnect the indirect
connection, but it’s not clear if we should set ����

�� or ����

� to zero,

since we could do either. The goal is, in principle, to disconnect the
link that will ultimately lead to having to make the fewest subsequent
disconnections, so that we end up with the closest possible constraint
set to the original.

We suggest a method for dealing with this problem; another is sug-
gested in [10]. It is likely that they can be greatly improved upon, but
are meant as a first cut at a reasonable polynomial time algorithm to
find a close sparse subset.
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We set up transmission delays and propagation delays as in (9) and
(10), and then instead of adding the binary constraint and making the
problem non-convex, add the relaxed constraint � � ��� � � for all
�� �, and solve the resulting convex problem. Then, for a set of indeces
violating condition (8), set ����

�� to zero if ���� � ����, and set ����

�� to
zero otherwise, before re-solving the convex problem. The motivation
is that we disconnect the one that has a larger delay, that is, which is
more constrained, in the case where we allowed varying degrees of
constraint. The relaxed problem could instead be solved with increasing
penalties on the entropy of ��������, to approach a binary solution.
This method has the benefit that it could be used to find a close sparse
set or subset.

VI. NONLINEAR TIME-VARYING CONTROL

It was shown in [11] that if we consider the design of possibly non-
linear, possibly time-varying (but still causal) controllers to stabilize
possibly nonlinear, possibly time-varying (but still causal) plants, then
while the quadratic invariance results no longer hold, the following
condition:

���� �	��� � 
 ��	 
�� ����� � 


similarly allows for a convex parameterization of all stabilizing con-
trollers subject to the given constraint.

This condition is equivalent to quadratic invariance when 
 is de-
fined by delay constraints or by sparsity constraints, and so the algo-
rithms in this technical note may also be used to find the closest con-
straint for which this is achieved.

VII. CONCLUSION

The overarching goal of this technical note is the design of linear
time-invariant, decentralized controllers for plants comprising dy-
namically coupled subsystems. Given pre-selected constraints on
the controller which capture the decentralization being imposed,
we addressed the question of finding the closest constraint which
is quadratically invariant under the plant. Problems subject to such
constraints are amenable to convex synthesis, so this is important for
bounding the optimal solution to the original problem.

We focused on two particular classes of this problem. The first is
where the decentralization imposed on the controller is specified by
delay constraints; that is, information is passed between subsystems
with some given delays. The second is where the decentralization im-
posed on the controller is specified by sparsity constraints; that is, each
controller can access information from some subsystems but not others.

For the delay constraints, we showed that finding the closest
quadratically invariant constraint can be set up as a convex optimiza-
tion problem. We further showed that finding the closest superset; that
is, the closest set that is less restrictive than the pre-selected one, to
get lower bounds on the original problem, is also a convex problem, as
is finding the closest subset.

For the sparsity constraints, the convexity is lost, but we provided
an algorithm which is guaranteed to give the closest quadratically in-
variant superset in at most ���

�
� iterations, where � is the number of

subsystems. We also discussed methods to give close quadratically in-
variant subsets.
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