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Abstract

This thesis considers the problem of constructing optimal decentralized controllers.

The problem is formulated as one of minimizing the closed-loop norm of a feedback

system subject to constraints on the controller structure.

The notion of quadratic invariance of a constraint set with respect to a system is

defined. It is shown that quadratic invariance is necessary and sufficient for the con-

straint set to be preserved under feedback. It is further shown that if the constraint

set has this property, this allows the constrained minimum-norm problem to be solved

via convex programming. These results are developed in a very general framework,

and are shown to hold for continuous-time systems, discrete-time systems, or opera-

tors on Banach spaces, for stable or unstable plants, and for the minimization of any

norm.

The utility of these results is then demonstrated on some specific constraint classes.

An explicit test is derived for sparsity constraints on a controller to be quadratically

invariant, and thus amenable to convex synthesis. Symmetric synthesis is also shown

to be quadratically invariant.

The problem of control over networks with delays is then addressed as another

constraint class. Multiple subsystems are considered, each with its own controller,

such that the dynamics of each subsystem may affect those of other subsystems with

some propagation delays, and the controllers may communicate with each other with

some transmission delays. It is shown that if the communication delays are less than

the propagation delays, then the associated constraints are quadratically invariant,

and thus optimal controllers can be synthesized. We further show that this result still

holds in the presence of computational delays.

v



This thesis unifies the few previous results on specific tractable decentralized con-

trol problems, identifies broad and useful classes of new solvable problems, and de-

lineates the largest known class of convex problems in decentralized control.
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Chapter 1

Introduction

Much of conventional controls analysis assumes that the controllers to be designed all

have access to the same measurements. With the advent of complex systems, decen-

tralized control has become increasingly important, where one has multiple controllers

each with access to different information. Examples of such systems include flocks of

aerial vehicles, autonomous automobiles on the freeway, the power distribution grid,

spacecraft moving in formation, and paper machining.

In a standard controls framework, the decentralization of the system manifests

itself as sparsity or delay constraints on the controller to be designed. Therefore a

canonical problem one would like to solve in decentralized control is to minimize a

norm of the closed-loop map subject to a subspace constraint as follows

minimize ‖f(P,K)‖
subject to K stabilizes P

K ∈ S

For a general linear time-invariant plant P and subspace S there is no known tractable

algorithm for computing the optimal K. It has been known since 1968 [30] that even

the simplest versions of this problem can be extremely difficult. In fact, certain cases

have been shown to be intractable [15, 3]. However, there are also several special

cases of this problem for which efficient algorithms have been found [2, 8, 10, 16, 26,

1



2 CHAPTER 1. INTRODUCTION

27]. This thesis unifies these cases and identifies a simple condition, which we call

quadratic invariance , under which the above problem may be recast as a convex

optimization problem. The notion of quadratic invariance allows us to better under-

stand this dichotomy between tractable and intractable optimal decentralized control

problems. It further delineates the largest known class of decentralized problems for

which optimal controllers may be efficiently synthesized.

Quadratic invariance is a simple algebraic condition relating the plant and the

constraint set. The main results of this thesis hold for continuous-time systems,

discrete-time systems, or operators on Banach spaces, for stable or unstable plants,

and for the minimization of any norm.

In Chapter 2, we define quadratic invariance, and present some of its character-

istics. In Chapter 3, we show that quadratic invariance is necessary and sufficient

for the constraint set to be invariant under a linear fractional transformation (LFT),

namely, the map from K to K(I − GK)−1. This is first shown for operators over

Banach spaces in Section 3.1, and then for causal operators on extended spaces in

Section 3.2. This allows for convex synthesis of optimal controllers when the plant is

stable.

In Chapter 4, we show that for possibly unstable plants, as long as a nominal

controller exists which is both stable and stabilizing, this invariance implies that the

information constraint is equivalent to affine constraints on the Youla parameter.

Thus synthesizing optimal stabilizing controllers subject to quadratically invariant

constraints is a convex optimization problem. We further show that this is still a

convex optimization problem, even when such a nominal controller is unobtainable.

In Chapter 5 we apply these results to specific constraint classes. We first consider

sparsity constraints in Section 5.1. We develop an explicit test for the quadratic

invariance of sparsity constraints, and thus show that optimal synthesis subject to

such constraints which pass the test may be cast as a convex optimization problem.

As a consequence of the test, we show some examples of sparsity structures which

are quadratically invariant, and also show that block diagonal constraints are never

quadratically invariant unless the plant is block diagonal as well.

We show in Section 5.2 that optimal synthesis of a symmetric controller for a
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symmetric plant is also quadratically invariant and thus amenable to convex synthesis.

This is important because this problem, while formerly known to be solvable, defied

other efforts to classify tractable problems.

We then in Section 5.3 consider the problem of control over networks with delays.

We find that optimizing the closed-loop norm may be formulated as a convex opti-

mization problem when the controllers can communicate faster than the dynamics

propagate. We further show that this result still holds in the presence of computa-

tional delay.

These results all hold for the minimization of an arbitrary norm. In Chapter 6 we

show that if the norm of interest is the H2-norm, then the constrained convex opti-

mization problem derived in Section 4 may be further reduced to an unconstrained

convex optimization problem, and readily solved. We further show how similar tech-

niques may be used to systematically find stabilizing decentralized controllers for

quadratically invariant constraints. We then provide some numerical examples.

1.1 Prior Work

Decentralized control has been studied from many perspectives over the past half cen-

tury, and there have been many striking results which illustrate the complexity of this

problem. Important early work includes that of Radner [17], who developed sufficient

conditions under which minimal quadratic cost for a linear system is achieved by a

linear controller. An important example was presented in 1968 by Witsenhausen [30]

where it was shown that for quadratic stochastic optimal control of a linear system,

subject to a decentralized information constraint called non-classical information, a

nonlinear controller can achieve greater performance than any linear controller. An

additional consequence of the work of [13, 30] is to show that under such a non-

classical information pattern the cost function is no longer convex in the controller

variables, a fact which today has increasing importance.

With the difficulty of the general problem elucidated and the myth of ubiquitous

linear optimality refuted, efforts followed to classify when linear controllers were in-

deed optimal, to discern when finding the optimal linear controller could be cast as a
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convex optimization problem, and to understand the complexity of decentralized con-

trol problems. In a later paper [31], Witsenhausen summarized several important re-

sults on decentralized control at that time, and gave sufficient conditions under which

the problem could be reformulated so that the standard Linear-Quadratic-Gaussian

(LQG) theory could be applied. Under these conditions, an optimal decentralized

controller for a linear system could be chosen to be linear. Ho and Chu [10], in

the framework of team theory, defined a more general class of information structures,

called partially nested, for which they showed the optimal LQG controller to be linear.

Roughly speaking, a plant-controller system is called partially nested if whenever the

information of controller A is affected by the decision of a controller B, then A has

access to all of the information that B has.

The study of the computational complexity of decentralized control problems has

shown certain problems to be intractable. Blondel and Tsitsiklis [3] showed that the

problem of finding a stabilizing decentralized static output feedback is NP-complete.

This is also the case for a discrete variant of Witsenhausen’s counterexample [15].

For particular information structures, the controller optimization problem may

have a tractable solution, and in particular, it was shown by Voulgaris [26] that

the so-called one-step delay information sharing pattern problem has this property.

In [8] the LEQG problem is solved for this information pattern, and in [26] the

H2, H∞ and L1 control synthesis problems are solved. A class of structured spatio-

temporal systems has also been analyzed in [2], and shown to be reducible to a convex

program. Several information structures are identified in [16] for which the problem of

minimizing multiple objectives is reduced to a finite-dimensional convex optimization

problem.

In this thesis we define a property called quadratic invariance, show that it is

necessary and sufficient for the constraint set to be preserved under feedback, and

that this allows optimal stabilizing decentralized controllers to be synthesized via

convex programming. The tractable structures of [2, 8, 10, 16, 26, 27, 31] can all be

shown to satisfy this property.
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1.2 Preliminaries

Given topological vector spaces X ,Y , let L(X ,Y) denote the set of all maps T : X →
Y such that T is linear and continuous. Note that if X ,Y are normed spaces, as in

Section 3.1, then all such T are bounded, but that T may be unbounded in general.

We abbreviate L(X ,X ) with L(X ).

Suppose that we have a generalized plant P ∈ L(W ×U ,Z × Y) partitioned as

P =

[
P11 P12

P21 P22

]

so that P11 : W → Z, P12 : U → Z, P21 : W → Y and P22 : U → Y . Suppose

K ∈ L(Y ,U). If I − P22K is invertible, define f(P,K) ∈ L(W ,Z) by

f(P,K) = P11 + P12K(I − P22K)−1P21

The map f(P,K) is called the (lower) linear fractional transformation (LFT)

of P and K; we will also refer to this as the closed-loop map. In the remainder

of the thesis, we abbreviate our notation and define G = P22, as we will refer to this

block frequently.

Dual pairings

Given a linear vector space X , let X ∗ denote the dual-space of X , and let 〈x, x∗〉
denote the dual pairing of any x ∈ X and x∗ ∈ X ∗. For S ⊆ X and T ⊆ X ∗ define

S⊥ =
{
x∗ ∈ X ∗ | 〈x, x∗〉 = 0 for all x ∈ S

}

⊥T =
{
x ∈ X | 〈x, x∗〉 = 0 for all x∗ ∈ T

}
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Kronecker products

Given A ∈ Cm×n and B ∈ Cs×q let the Kronecker product of A and B be denoted by

A⊗B and given by

A⊗B =




A11B · · · A1nB
...

...

Am1B · · · AmnB


 ∈ C

ms×nq

Given A ∈ Cm×n, we may write A in term of its columns as

A =
[
a1 . . . an

]

and then associate a vector vec(A) ∈ Cmn defined by

vec(A) =




a1

...

an




Lemma 1. Let A ∈ Cm×n, B ∈ Cs×q, X ∈ Cn×s. Then

vec(AXB) = (BT ⊗ A) vec(X)

Proof. See, for example, [11].

Transfer functions

We use the following standard notation. Denote the imaginary axis by

jR =
{
z ∈ C | <(z) = 0

}

and the closed right half of the complex plane by

C+ =
{
z ∈ C | <(z) ≥ 0

}
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A rational function G : jR → C is called real-rational if the coefficients of its

numerator and denominator polynomials are real. Similarly, a matrix-valued function

G : jR → Cm×n is called real-rational if Gij is real-rational for all i, j. It is called

proper if

lim
ω→∞

G(jω) exists and is finite,

and it is called strictly proper if

lim
ω→∞

G(jω) = 0.

Denote by Rm×n
p the set of matrix-valued real-rational proper transfer matrices

Rm×n
p =

{
G : jR→ Cm×n | G proper, real-rational

}

and let Rm×n
sp be

Rm×n
sp =

{
G ∈ Rm×n

p | G strictly proper
}

Also let RH∞ be the set of real-rational proper stable transfer matrices

RHm×n
∞ =

{
G ∈ Rm×n

p | G has no poles in C+

}

where we have used the fact that functions in RH∞ are determined by their values

on jR, and RH∞ can thus be regarded as a subspace of Rp. If A ∈ Rn×n
p we say

A is invertible if limω→∞A(jω) is an invertible matrix and A(jω) is invertible for

almost all ω ∈ R. Note that this is different from the definition of invertibility for

the associated multiplication operator on L2. If A is invertible we write B = A−1 if

B(jω) = A(jω)−1 for almost all ω ∈ R. Note that, if G ∈ Rny×nu
sp then I − GK is

invertible for all K ∈ Rnu×ny
p . Both this fact and the inverse itself will be consistent

with our definition of invertibility for operators on extended spaces.

When we consider transfer functions for discrete-time systems instead of continuous-

time systems, jR is replaced with {z ∈ C | |z| = 1}, the unit circle, C+ is replaced

with {z ∈ C | |z| ≥ 1}, and jω is replaced with ejω. The above terms are then defined

analogously.
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Topology

Let X be a vector space and {‖·‖α | α ∈ I} be a family of semi-norms on X . The

family is called sufficient if for all x ∈ X such that x 6= 0 there exists α ∈ I such

that ‖x‖α 6= 0. The topology generated by all open ‖·‖α-balls is called the topology

generated by the family of semi-norms. Convergence in this topology is equivalent to

convergence in every semi-norm, and continuity of a linear operator is equivalent to

continuity in every semi-norm. See, for example, [35, 24].

Extended spaces

We introduce some notation for extended linear spaces. These spaces are utilized

extensively in [7, 29]. The topologies developed here for operators on these spaces

were first utilized in [20] and are used particularly in Section 3.2.

We define the truncation operator PT for all T ∈ R+ on all functions f : R+ → R
such that fT = PTf is given by

fT (t) =




f(t) if t ≤ T

0 if t > T

and hereafter abbreviate PTf as fT . We make use of the standard Lp Banach spaces

equipped with the usual p-norm

Lp =

{
f : R+ → R

∣∣∣∣
∫ ∞

0

(f(t))p exists and is finite

}
‖f‖p =

(∫ ∞

0

(f(t))p dt

) 1
p

and the extended spaces

Lpe = {f : R+ → R | fT ∈ Lp for all T ∈ R+} for all p ≥ 1

We let the topology on L2e be generated by the sufficient family of semi-norms

{‖·‖T | T ∈ R+} where ‖f‖T = ‖PTf‖L2 , and let the topology on L(Lm2e, L
n
2e) be

generated by the sufficient family of semi-norms {‖·‖T | T ∈ R+} where ‖A‖T =

‖PTA‖Lm2 →Ln2 .
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We use similar notation for discrete time. As is standard, we extend the discrete-

time Banach spaces `p to the extended space

`e = {f : Z+ → R | fT ∈ `∞ for all T ∈ Z+}

Note that in discrete time, all extended spaces contain the same elements, since the

common requirement is that the sequence is finite at any finite index. This motivates

the abbreviated notation of `e.

We let the topology on `e be generated by the sufficient family of semi-norms

{‖·‖T | T ∈ Z+} where ‖f‖T = ‖PTf‖`2 , and let the topology on L(`me , `
n
e ) be

generated by the sufficient family of semi-norms {‖·‖T | T ∈ Z+} where ‖A‖T =

‖PTA‖`m2 →`n2 .

When the dimensions are implied by context, we omit the superscripts of Rm×n
p ,

Rm×n
sp ,RHm×n

∞ , Lm×npe , `m×ne . We will indicate the restriction of an operator A to

L2[0, T ] or `e[0, T ] by A|T , and the restriction and truncation of an operator as AT =

PTA|T . Thus for every semi-norm in this thesis, one may write ‖A‖T = ‖AT‖. Given

a set of operators S, we also denote ST = {PTA|T ; A ∈ S}.

1.3 Problem Formulation

Given linear spaces U ,W ,Y ,Z, generalized plant P ∈ L(W × U ,Z × Y), and a

subspace of admissible controllers S ⊆ L(Y ,U), we would like to solve the following

problem:

minimize ‖f(P,K)‖
K ∈ S

(1.1)

Here ‖·‖ is any norm on L(W ,Z), chosen to encapsulate the control performance

objectives, and S is a subspace of admissible controllers which encapsulates the de-

centralized nature of the system. The norm on L(W ,Z) may be either a determin-

istic measure of performance, such as the induced norm, or a stochastic measure of

performance, such as the H2 norm. Many decentralized control problems may be for-

mulated in this manner, and some examples are shown below. We call the subspace
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S the information constraint .

In Section 3.1, we consider Banach spaces and thus have the additional constraint

that (I−GK) be invertible. In Chapter 4 we consider extended spaces and thus have

the additional constraint that K stabilize P .

This problem is made substantially more difficult in general by the constraint

that K lie in the subspace S. Without this constraint, the problem may be solved

by a simple change of variables, as discussed in Section 3.1.1. For specific norms, the

problem may also be solved using a state-space approach. Note that the cost function

‖f(P,K)‖ is in general a non-convex function of K. No computationally tractable

approach is known for solving this problem for arbitrary P and S.

1.3.1 Some examples

Many standard centralized and decentralized control problems may be represented

in the form of problem (1.1), for specific choices of P and S. Examples include the

following.

Perfectly decentralized control

We would like to design n separate controllers {K1, . . . , Kn}, with controller Ki con-

nected to subsystem Gi of a coupled system, as in Figure 1.1.

G1 G2 G3 G4 G5

K1 K2 K3 K4 K5

Figure 1.1: Perfectly decentralized control

When reformulated as a synthesis problem in the LFT framework above, the

constraint set S is

S =
{
K ∈ L(Y ,U)

∣∣ K = diag(K1, . . . , Kn)
}
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that is, S consists of those controllers that are block-diagonal. We will revisit this

example in Section 5.1.3.

Delayed measurements

In this example we have n subsystems {G1, . . . , Gn}, each with its respective con-

troller Ki, arranged so that subsystem i receives signals from controller i after a

computational delay of c, controller i receives measurements from subsystem j with

a transmission delay of t|i− j|, and subsystem i receives signals from subsystem i+ 1

delayed by propagation delay p. This is illustrated in Figure 1.2 for the case where

n = 3.

DpDp

DpDp

G2 G3G1

DcDcDc

Dt Dt

Dt Dt

Dt Dt

K1 K2 K3

Figure 1.2: Distributed control with delays

When formulated as a synthesis problem in the LFT framework, the constraint

set S may be defined as follows. Let K ∈ S if and only if

K =




DcH11 Dt+cH12 . . . D(n−1)t+cH1n

Dt+cH21 DcH22 . . . D(n−2)t+cH2n

...
...

D(n−1)t+cHn1 . . . DcHnn




for some Hij ∈ Rp of appropriate spatial dimensions. The corresponding system G is
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given by

G =




A11 DpA12 . . . D(n−1)pA1n

DpA21 A22 . . . D(n−2)pA2n

...
...

D(n−1)pAn1 . . . Ann




for some Aij ∈ Rsp.

We will consider a broadly generalized version of this example in Section 5.3,

where, as an example of the utility of our approach, we provide conditions under

which it may be solved via convex programming.



Chapter 2

Quadratic Invariance

We now turn to the main focus of this thesis, which is the characterization of con-

straint sets S that lead to tractable solutions for problem (1.1). The following prop-

erty, first introduced in [18], will be shown to provide that characterization.

Definition 2. Suppose G ∈ L(U ,Y), and S ⊆ L(Y ,U). The set S is called quadrat-

ically invariant under G if

KGK ∈ S for all K ∈ S

Note that, given G, we can define a quadratic map Ψ : L(Y ,U) → L(Y ,U) by

Ψ(K) = KGK. Then a set S is quadratically invariant if and only if S is an invariant

set of Ψ; that is Ψ(S) ⊆ S.

Definition 3. Given a constraint set S ⊆ L(Y ,U), we define a complementary set

S? ⊆ L(U ,Y) by

S? =
{
G ∈ L(U ,Y) | S is quadratically invariant under G

}

Theorem 4. If S is a subspace, S? is quadratically invariant under K for all K ∈ S.

Proof. Suppose K1, K2 ∈ S and G ∈ S?. First note that

K1GK2 +K2GK1 = (K1 +K2)G(K1 +K2)−K1GK1 −K2GK2

13
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and since all terms on the right hand side of this equation are in S, we have K1GK2 +

K2GK1 ∈ S. Then we have

2K2GK1GK2 =

(K2 +K1GK2 +K2GK1)G(K2 +K1GK2 +K2GK1)

−(K1GK2 +K2GK1)G(K1GK2 +K2GK1)−K2GK2

+(K1 −K2GK2)G(K1 −K2GK2)−K1GK1

and since all terms on the right hand side of this equation are in S, we haveK2GK1GK2 ∈
S for all K1, K2 ∈ S and for all G ∈ S?. This implies GK1G ∈ S? for all K1 ∈ S and

for all G ∈ S?, and the desired result follows.

This tells us that the complementary set is quadratically invariant under any

element of the constraint set, which will be very useful in proving the main result of

Chapter 4.

We give another general lemma on quadratic invariance which will be useful

throughout the remainder of the thesis.

Lemma 5. Suppose G ∈ L(U ,Y), and S ⊆ L(Y ,U) is a subspace. If S is quadrati-

cally invariant under G, then

K(GK)n ∈ S for all K ∈ S, n ∈ Z+

Proof. We prove this by induction. By assumption, given K ∈ S, we have that

KGK ∈ S. For the inductive step, assume that K(GK)n ∈ S for some n ∈ Z+. Then

2K(GK)n+1 = (K +K(GK)n)G(K +K(GK)n)−KGK −K(GK)2n+1

and since all terms on the right hand side of this equation are in S, we haveK(GK)n+1 ∈
S.



Chapter 3

Invariance Under Feedback

This chapter contains the main technical results of this thesis. We show that quadratic

invariance is necessary and sufficient for the constraint set to be invariant under a

linear fractional transformation, namely, the map from K to K(I −GK)−1.

This is shown first in Section 3.1 for operators on Banach spaces, and it allows

for the closed-loop minimum norm problem to be recast as a convex optimization

problem. However, this framework does not allow for the possibility of unstable

operators, and the result is subject to a technical condition. In Section 3.2, we turn

our focus to causal operators on extended spaces. Making use of the topologies we

defined in Section 1.2, we obtain a similar result which applies to possibly unstable

operators and which is free from the strictures of technical conditions.

We define the map h : L(U ,Y)× L(Y ,U)→ L(Y ,U) by

h(G,K) = −K(I −GK)−1

for all G,K such that I − GK is invertible. We will also make use of the notation

hG(K) = h(G,K), which is then defined for all K ∈ L(Y ,U) such that I − GK is

invertible. Given G ∈ L(U ,Y), we note that hG is an involution on this set, as a

straightforward calculation shows that hG(hG(K)) = K.

15
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3.1 Banach Spaces

In this section, we consider the case where U ,W ,Y ,Z are Banach spaces and thus P

is a bounded linear operator. We then introduce a little more notation.

Given G ∈ L(U ,Y), we define the set M ⊆ L(Y ,U) of controllers K such that

f(P,K) is well-defined by

M =
{
K ∈ L(Y ,U)

∣∣ (I −GK) is invertible
}

For any Banach space X and bounded linear operator A ∈ L(X ) define the re-

solvent set ρ(A) by ρ(A) = {λ ∈ C | (λI − A) is invertible} and the resolvent

RA : ρ(A) → L(X ) by RA(λ) = (λI − A)−1 for all λ ∈ ρ(A). We also define ρuc(A)

to be the unbounded connected component of ρ(A).

Note that 1 ∈ ρ(GK) for all K ∈M , and define the subset N ⊆M by

N =
{
K ∈ L(Y ,U)

∣∣ 1 ∈ ρuc(GK)
}

We can now formally state the problem we are to address in this section as follows.

Given Banach spaces U ,W ,Y ,Z, generalized plant P ∈ L(W × U ,Z × Y), and a

subspace of admissible controllers S ⊆ L(Y ,U), we would like to solve the following

problem

minimize ‖f(P,K)‖
subject to K ∈M

K ∈ S
(3.1)

3.1.1 Change of Variables

Letting Q = hG(K), we have

f(P,K) = P11 − P12QP21

Hence we have the standard parametrization of all closed-loop maps which are achiev-

able by bounded controllers K. This parametrization is related to the well-known
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internal model principle and Youla parametrization of stabilizing controllers. Now

we can reformulate problem (3.1) as the following equivalent optimization problem.

minimize ‖P11 − P12QP21‖
subject to Q ∈M

hG(Q) ∈ S
(3.2)

The closed-loop map is now affine in Q, and its norm is therefore a convex function

of Q. If not for the last constraint, that is, the information constraint S, we could

solve this problem to find Q, and then construct the optimal K for problem (3.1) via

the transformation K = h(Q).

Note that while we are not considering all Q ∈ L(Y ,U), only those Q ∈ M ,

in many cases of practical interest M is dense in L(Y ,U). We will further discuss

eliminating this constraint in Section 3.1.3.

However, we see that the information constraint prevents this problem from being

easily solved. Specifically, the set

{
Q ∈ L(Y ,U)

∣∣ hG(Q) ∈ S
}

is not convex in general. The main thrust of this chapter is to seek conditions under

which this last constraint may be converted to a convex constraint.

3.1.2 LFT Invariance

Before proving the main result of this section, we state the following preliminary

lemmas regarding analyticity.

Lemma 6. Suppose D ⊆ C is an open set, X is a Banach space, and f : D → X is

analytic. Suppose that x ∈ D, and f(y) = 0 for all y in an open neighborhood of x.

Then f(y) = 0 for all y in the connected component of D containing x.

Proof. See for example Theorem 3.7 in [6].



18 CHAPTER 3. INVARIANCE UNDER FEEDBACK

Lemma 7. Suppose X and Y are Banach spaces, D ⊆ C is an open set, and A :

X → Y is a bounded linear operator. Suppose q : D → X is analytic, and r : D → Y
is given by r = A ◦ q. Then r is analytic.

Proof. This is a straightforward consequence of the definitions.

Lemma 8. Suppose K ∈ L(Y ,U), G ∈ L(U ,Y), and Γ ∈ L(Y ,U)∗. Define the

function qΓ : ρ(GK)→ C by

qΓ(λ) = 〈KRGK(λ),Γ〉.

Then qΓ is analytic.

Proof. Define the linear map γ : L(Y)→ C by

γ(G) = 〈KG,Γ〉 for all G ∈ L(Y).

Clearly γ is bounded, since

‖γ(G)‖ ≤ ‖K‖‖Γ‖‖G‖ for all G ∈ L(Y).

Further qΓ = γ ◦RGK , and the resolvent is analytic, hence by Lemma 7 we have that

qΓ is analytic.

The following lemma will be useful for proving the converse of our main results

both in this section and in Section 3.2.

Lemma 9. Suppose U ,Y are Banach spaces, G ∈ L(U ,Y), S ⊆ L(Y ,U) is a closed

subspace, and S is not quadratically invariant under G. Then there exists K ∈ S

such that I −GK is invertible and hG(K) /∈ S.

Proof. There exists K0 ∈ S such that K0GK0 /∈ S. We will construct K ∈ S

such that hG(K) /∈ S. Without loss of generality we may assume ‖K0‖ = 1. Choose

Γ ∈ S⊥ with ‖Γ‖ = 1 such that

β = 〈K0GK0,Γ〉 ∈ R and β > 0,
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and choose α ∈ R such that

0 < α <
β

‖G‖
(
β + ‖G‖

)

Let K = αK0. Then ‖GK‖ < 1, K ∈ S, and

〈K(I −GK)−1,Γ〉 =
∞∑

i=0

〈K(GK)i,Γ〉

Thus

∣∣〈K(I −GK)−1,Γ〉
∣∣ =

∣∣∣∣
∞∑

i=0

〈K(GK)i,Γ〉
∣∣∣∣

=
∣∣∣α2β +

∞∑

i=2

〈K(GK)i,Γ〉
∣∣∣

≥ α2β − α
∞∑

i=2

‖G‖iαi

= α2

(
β − α‖G‖

(
β + ‖G‖

)

1− α‖G‖

)

> 0

Hence K(I −GK)−1 /∈ S as required.

Main result - Banach spaces. The following is the main result of this section.

It states that given G, if a certain technical condition holds, then the constraint

set S is quadratically invariant if and only if the information constraints on K are

equivalent to the same affine constraints on the parameter Q = hG(K). In other

words, subject to technical conditions, quadratic invariance is equivalent to invariance

under feedback.

Theorem 10. Suppose G ∈ L(U ,Y), and S ⊆ L(Y ,U) is a closed subspace. Further



20 CHAPTER 3. INVARIANCE UNDER FEEDBACK

suppose N ∩ S = M ∩ S. Then

S is quadratically invariant under G ⇐⇒ hG(S ∩M) = S ∩M

Proof. ( =⇒ ) Suppose K ∈ S ∩M. We first show that hG(K) ∈ S ∩M . For any

Γ ∈ S⊥ define the function qΓ : ρ(GK)→ C by

qΓ(λ) = 〈K(λI −GK)−1,Γ〉.

For any λ such that |λ| > ‖GK‖, the Neumann series expansion for RGK gives

K(λI −GK)−1 =
∞∑

n=0

λ−(n+1)K(GK)n

By Lemma 5 we have K(GK)n ∈ S for all n ∈ Z+, and hence K(λI − GK)−1 ∈ S
since S is a closed subspace. Thus,

qΓ(λ) = 0 for all λ such that |λ| > ‖GK‖

By Lemma 8, the function qΓ is analytic, and since λ ∈ ρuc(GK) for all |λ| > ‖GK‖,
by Lemma 6 we have

qΓ(λ) = 0 for all λ ∈ ρuc(GK).

It follows from K ∈ N that 1 ∈ ρuc(GK), and therefore qΓ(1) = 0. Hence

〈K(I −GK)−1,Γ〉 = 0 for all Γ ∈ S⊥.

This implies

K(I −GK)−1 ∈ ⊥(S⊥).

Since S is a closed subspace, we have ⊥(S⊥) = S (see for example [12], p. 118) and

hence we have shown K ∈ S ∩M =⇒ hG(K) ∈ S. Since h is a bijective involution

on M , it follows that hG(S ∩M) = S ∩M which was the desired result.

(⇐= ) The converse follows immediately from Lemma 9.
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There are many cases of interest where the technical condition above is automat-

ically satisfied, specifically any case where the plant is such that the resolvent set of

GK is always connected. This includes the case where G is compact, such as for any

problem where the Banach spaces are finite dimensional, as shown in the following

corollary.

Corollary 11. Suppose G ∈ L(U ,Y) is compact and S ⊆ L(Y ,U) is a closed sub-

space. Then

S is quadratically invariant under G ⇐⇒ hG(S ∩M) = S ∩M

Proof. This follows since if G is compact then GK is compact for any K ∈ S, and

hence the spectrum of GK is countable, and so N = M .

3.1.3 Equivalent Problems

When the conditions of Theorem 10 are met, we have the following equivalent prob-

lem. K is optimal for problem (3.1) if and only if K = hG(Q) and Q is optimal

for
minimize ‖P11 − P12QP21‖

subject to Q ∈M
Q ∈ S

(3.3)

We then consider further reducing the problem to the following convex optimiza-

tion problem.

minimize ‖P11 − P12QP21‖
subject to Q ∈ S

(3.4)

If the minimum to this problem did occur for some Q /∈ M , it would mean that

the original problem approaches its optimum as (I −GK)−1 blows up. Therefore the

constraint that Q ∈M is unnecessary when the original problem is well-posed.

The solution procedure is then to solve problem (3.4) with convex programming,

and recover the optimal controller for the original problem (3.1) as K = hG(Q).
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3.1.4 Violation

The technical conditions of Theorem 10 are automatically satisfied in many cases of

interest, such as in Corollary 11. However, the conditions cannot always be eradicated.

We show an example where the resolvent set is not connected, the technical conditions

thus fail, and the main result of this section no longer holds. This is meant to elucidate

that the conditions are not for ease of proof, but are actually needed.

Consider the space of two-sided sequences

`2 =

{
(. . . , x−1, x0, x1, . . .)

∣∣∣∣ xi ∈ R,
∞∑

i=−∞
x2
i <∞

}
.

Define the delay operator D : `2 → `2 as D(x)i = xi−1. Let Y = U = `2, let the plant

be the identity G = I, and let S be the subspace of causal controllers

S = {K ∈ L(`2) | PTKPT = PTK for all T ∈ Z}

such that S is clearly quadratically invariant under G. Now consider K = 2D ∈ S;

we have

(I −GK)−1 = −1

2
D−1

(
I − 1

2
D−1

)−1

= −
∞∑

k=1

1

2k
D−k

and so K ∈M . Also note that

ρ(GK) = {λ ∈ C | |λ| 6= 2}

and hence ρuc(GK) = {λ ∈ C | |λ| > 2}, which implies that K /∈ N . Finally,

K(I −GK)−1 = −
∞∑

k=0

1

2k
D−k /∈ S

So we have G ∈ L(U ,Y), S ⊆ L(Y ,U) is a closed subspace, and S is quadratically
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invariant under G, but N ∩ S 6= M ∩ S. We have then found a K ∈ S ∩M such that

hG(K) /∈ S, and so hG(S ∩M) 6= S ∩M .

This shows that the technical conditions of Theorem 10 cannot be completely

eradicated for arbitrary Banach spaces, and motivates us to find a different framework

under which a similar result can be achieved without them.

3.2 Extended Spaces

In this section, we turn our focus to time-invariant causal operators on extended

spaces. This framework allows us to both extend our main results to unbounded

operators and to eliminate technical conditions from our assumptions.

From Lemma 5, and from the proof in the previous section, we see that if we

could express K(I−GK)−1 as
∑∞

n=0 K(GK)n, then this mapping would lie in S for all

K ∈ S, provided that S was a closed subspace. Noting that K can be pulled outside of

the sum due to continuity, even when it is unbounded, we thus seek conditions under

which
∑∞

n=0(GK)n converges. We would like to be able to utilize this expansion not

just for small K, as in the small gain theorem, but for arbitrarily large K as well. We

consider the plant and controller as operators on extended spaces both because that

will allow us to achieve this, and also so that unstable operators may be considered.

In Section 3.2.1, we develop conditions under which this Neumann series is guar-

anteed to converge in the topologies defined in Section 1.2. We then prove in Sec-

tion 3.2.2 that under very broad assumptions quadratic invariance in necessary and

sufficient for the constraint set to be preserved under feedback. These conditions

include, but are not limited to, the case we are often interested in where G ∈ Rsp

and S ⊆ Rp.

3.2.1 Convergence of Neumann Series

We first analyze convergence of the Neumann series

(I −W )−1 =
∞∑

n=0

W n
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where W is a general causal time-invariant linear operator on extended spaces. Note

that while most of the results in this thesis have analogs in both continuous-time

and discrete-time, the convergence proofs must be worked out separately. We first

analyze the continuous-time case, and begin by providing a preliminary lemma which

states that if a sequence of impulse responses converge in a particular sense, then

their associated operators do as well.

Lemma 12. Suppose Wn ∈ L(Lm2e) is causal and time-invariant for all n ∈ Z+,

w(n) ∈ L∞e is the impulse response of Wn, a ∈ L∞e and (w(n))T converges uniformly

to aT as n→∞ for all T ∈ R+. Then Wn converges to A ∈ L(Lm2e), where A is given

by Au = a ∗ u.

Proof. Given u ∈ Lm2e and T ∈ R+,

(a ∗ u)T = (aT ∗ uT )T

since a(t) = 0 and u(t) = 0 for t < 0. Hence (a∗u)T ∈ L2, since aT ∈ L1 and uT ∈ L2,

by Theorem 65 of [25]. Therefore, we can define A ∈ L(Lm2e) by Au = a ∗ u.

For any n ∈ Z+ and any T ∈ R+,

‖A−Wn‖2
T = sup

u∈L2,‖u‖2=1

‖PTAu− PTWnu‖2
2

≤ sup
u∈L2,‖u‖2=1

∥∥∥
(
aT − (w(n))T

)
∗ u
∥∥∥

2

2

≤ sup
u∈L2,‖u‖2=1

m∑

i=1

m∑

j=1

∥∥∥
(
aT − (w(n))T

)
ij

∥∥∥
2

1
‖uj‖2

2

and hence

‖A−Wn‖2
T ≤

m∑

i=1

m∑

j=1

∥∥∥
(
aT − (w(n))T

)
ij

∥∥∥
2

1

Since (w
(n)
ij )T converges uniformly to aT , for any ε > 0 we can choose N such that for

all n ≥ N and for all i, j = 1, . . . ,m,
∣∣∣(aij)T (t)− (w

(n)
ij )T (t)

∣∣∣ < ε
mT

for all t ∈ [0, T ]
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and thus ‖A−Wn‖T < ε. So Wn converges to A in L(Lm2e).

We can now prove convergence of the Neumann series under the given conditions

by showing the convergence of impulse responses. The method for showing this is

similar to that used for spatio-temporal systems in the appendix of [2].

Theorem 13. Suppose W ∈ L(Lm2e) is causal and time-invariant with impulse re-

sponse matrix w such that w ∈ L∞e. Then
∑∞

n=0 W
n converges to an element

B ∈ L(Lm2e) such that B = (I −W )−1.

Proof. Let q(T ) = supt∈[0,T ]‖w(t)‖ <∞ for all T ∈ R+, and let w(n) be the impulse

response matrix of W n. First we claim that ‖w(n)(T )‖ ≤ Tn−1

(n−1)!
q(T )n for all integers

n ≥ 1. This is true immediately for n = 1. For the inductive step,

∥∥w(n+1)(T )
∥∥ =

∥∥∥∥
∫ T

t=0

w(T − t)w(n)(t)dt

∥∥∥∥

≤
∫ T

t=0

‖w(T − t)‖ · ‖w(n)(t)‖dt

≤ q(T )

∫ T

t=0

‖w(n)(t)‖dt

≤ q(T )

∫ T

t=0

tn−1

(n− 1)!
q(t)ndt

≤ T n

n!
q(T )n+1

Then |w(n)
ij (t)| ≤ Tn−1

(n−1)!
q(T )n for all t ∈ [0, T ],for all n ≥ 1, and for all i, j = 1, . . . ,m.

∑∞
n=1

Tn−1

(n−1)!
q(T )n converges to q(T )eTq(T ), so by the Weierstrass M-test,

∑∞
n=1

(
w

(n)
ij

)
T

converges uniformly and absolutely for all i, j = 1, . . . ,m.

Let a =
∑∞

n=1 w
(n). Then aij ∈ L∞e ⊆ L1e for all i, j = 1, . . . ,m, and we can

define A,B ∈ L(Lm2e) by Au = a ∗ u and B = I + A.

Then by Lemma 12,
∑n

k=1 W
k converges to A in L(Lm2e), and thus

∑n
k=0 W

k

converges to B in L(Lm2e).

Lastly,

B(I −W ) = (I −W )B =
∞∑

n=0

W n −
∞∑

n=1

W n = I
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A simple example of the utility of this result is as follows. Consider W represented

by the transfer function 2
s+1

. Then I −W = s−1
s+1

is not invertible in L(L2). However

using the above theorem, the inverse in L(L2e) is given by
∑∞

n=0( 2
s+1

)n = s+1
s−1

.

We now move on to analyze the discrete-time case. Let r(·) denote spectral radius.

Theorem 14. Suppose W ∈ L(`me ) is causal and time-invariant with impulse response

matrix w such that w ∈ `e and r(w(0)) < 1. Then
∑∞

n=0 W
n converges to an element

B ∈ L(`me ) such that B = (I −W )−1.

Proof. We may represent PTW |T with the block lower triangular Toeplitz matrix

WT =




w(0)

w(1)
. . .

...

w(T ) · · · w(0)




Since w ∈ `e, WT ∈ RmT×mT . Then, r(WT ) = r(w(0)) < 1, which implies that
∑∞

n=0(WT )n converges in RmT×mT . Thus we can define B ∈ L(`me ) by (Bu)T =

(
∑∞

n=0(WT )n)uT for any u ∈ `me and any T ∈ Z+. It is then immediate that∥∥B −∑∞n=0 W
n
∥∥
T
→ 0 as n → ∞ for all T , and thus

∑∞
n=0 W

n converges to B

in L(`me ).

Lastly,

B(I −W ) = (I −W )B =
∞∑

n=0

W n −
∞∑

n=1

W n = I

Note that while the conditions of Theorem 14 are necessary for convergence as

well as sufficient, the conditions of Theorem 13 are not.

In particular, the above results imply the following corollary, which shows conver-

gence of the Neumann series for strictly proper systems, possibly with delay. Note

that the delay is redundant for discrete-time systems.

Corollary 15. Suppose W ∈ L(Lm2e) or W ∈ L(`me ) is given by Wij = DτijGij where
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τij ≥ 0 and Gij ∈ Rsp. Then
∑∞

n=0 W
n converges to an element B ∈ L(Lm2e) such

that B = (I −W )−1.

3.2.2 LFT Invariance

In this section, we will show that for a very broad class of systems, quadratic invari-

ance is necessary and sufficient for the information constraint S to be invariant under

a linear-fractional transformation.

We first state a lemma which will help with the converse of our main result.

Lemma 16. Suppose S ⊆ L(Lm2e, L
n
2e) or S ⊆ L(`me , `

n
e ), and C /∈ S. Then there

exists T such that CT /∈ ST .

Proof. Suppose not. Then for every positive T , CT ∈ ST . Thus for every T , there

exists K ∈ S such that PTC|T = PTK|T , or ‖C −K‖T = 0. Since ‖A‖T = 0 only if

‖A‖τ = 0 for all τ ≤ T , it follows that there exists K ∈ S such that ‖C −K‖T = 0

for all T . But then C −K = 0, and so C ∈ S and we have a contradiction.

We define a broad class of sets of controllers for which the closed-loop map will

always be well-defined. Note that this includes the case which is often of interest

where G ∈ Rsp and S ⊆ Rp.

Definition 17. We say that S ⊆ L(Lnu2e , L
ny
2e ) is inert with respect to G if for all

K ∈ S, (gk)ij ∈ L∞e for all i, j = 1, . . . ,m where (gk) is the impulse response matrix

of GK. We overload our notation and also define S ⊆ L(`nue , `
ny
e ) to be inert if for

all K ∈ S, (gk)ij ∈ `e for all i, j = 1, . . . ,m and r((gk)(0)) < 1 where (gk) is the

discrete impulse response matrix of GK.

Main result - extended spaces. The following theorem is the main result of this

section. It states that quadratic invariance of the constraint set is necessary and

sufficient for the set to be invariant under the LFT defined by hG.

Theorem 18. Suppose G ∈ L(Lnu2e , L
ny
2e ) or G ∈ L(`nue , `

ny
e ), and S is an inert closed

subspace. Then

S is quadratically invariant under G ⇐⇒ hG(S) = S
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Proof. ( =⇒ ) Suppose K ∈ S. We first show that hG(K) ∈ S.

K(I −GK)−1 = K

∞∑

n=0

(GK)n =
∞∑

n=0

K(GK)n

where the first equality follows from Theorems 13 and 14 and the second follows from

the continuity of K.

By Lemma 5 we have K(GK)n ∈ S for all n ∈ Z+, and hence K(I −GK)−1 ∈ S
since S is a closed subspace.

So K ∈ S =⇒ hG(K) ∈ S. Thus hG(S) ⊆ S, and since hG is involutive it follows

that hG(S) = S, which was the desired result.

(⇐= ) We now turn to the converse of this result. Suppose that S is not quadrat-

ically invariant under G. Then there exists K ∈ S such that KGK /∈ S, and thus

by Lemma 16, there exists a finite T such that PTKGK|T /∈ ST . Since K and G are

causal, we then have

KTGTKT /∈ ST where KT = PTKPT ∈ ST and GT = PTGPT

and thus ST is not quadratically invariant under GT . Then by Lemma 9 there exists

K̃ ∈ ST such that

K̃(I −GT K̃)−1 =
∞∑

n=0

K̃(GT K̃)n /∈ ST

By definition of ST , there exists K0 ∈ S such that K̃ = PTK0|T . Then by causality

of K0 and G,

PT

( ∞∑

n=0

K0(GK0)n
)∣∣∣∣

T

/∈ ST

and thus hG(K0) = −∑∞n=0 K0(GK0)n /∈ S.
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Optimal Stabilizing Controllers

In this chapter we consider the problem of finding optimal stabilizing controllers

subject to an information constraint. These results apply both to continuous-time

and discrete-time systems. Note that throughout this section, the constraint set S is

always inert, since G ∈ Rsp and S ⊆ Rp.

The optimization problem we address is as follows. Given P ∈ R(nz+ny)×(nw+nu)
p ,

and a subspace of admissible controllers S ⊆ Rnu×ny
p , we would like to solve:

minimize ‖f(P,K)‖
subject to K stabilizes P

K ∈ S
(4.1)

There have been several key results regarding controller parameterization and

optimization which we will extend for decentralized control, relying heavily on our

result from the previous chapter. The celebrated Youla parameterization [33] showed

that given a coprime factorization of the plant, one may parameterize all stabilizing

controllers. The set of closed-loop maps achievable with stabilizing controllers is

then affine in this parameter, an important result which converts the problem of

finding the optimal stabilizing controller to a convex optimization problem, given

the factorization. Zames proposed a two-step compensation scheme [34] for strongly

stabilizable plants, that is, plants which can be stabilized with a stable compensator.

29
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In the first step one finds any controller which is both stable and stabilizing, and

in the second one optimizes over a parameterized family of systems. This idea has

been extended to nonlinear control [1], and in this chapter we show that it may be

extended to decentralized control when the constraint set is quadratically invariant,

as first shown in [19].

Our approach starts with a single nominal decentralized controller which is both

stable and stabilizing, and uses it to parameterize all stabilizing decentralized con-

trollers. The resulting parameterization expresses the closed-loop system as an affine

function of a stable parameter, allowing the next step, optimization of closed-loop

performance, to be achieved with convex programming. Techniques for finding an

initial stabilizing controller for decentralized systems are discussed in detail in [23],

and conditions for decentralized stabilizability were developed in [28].

In the final section of this chapter, we show that problem (4.1) can still be con-

verted to a convex optimization problem when such a nominal controller is unobtain-

able.

4.1 Stabilization

P11 P12

P21 G

K

w

uy

z

v1 v2

Figure 4.1: Linear fractional interconnection of P and K

We say that K stabilizes P if in Figure 4.1 the nine transfer matrices from

(w, v1, v2) to (z, u, y) belong to RH∞. We say that K stabilizes G if in the figure the

four transfer matrices from (v1, v2) to (u, y) belong to RH∞. P is called stabilizable

if there exists K ∈ Rnu×ny
p such that K stabilizes P , and it is called is called strongly

stabilizable if there exists K ∈ RHnu×ny
∞ such that K stabilizes P . We denote by
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Cstab ⊆ Rnu×ny
p the set of controllers K ∈ Rnu×ny

p which stabilize P . The following

standard result relates stabilization of P with stabilization of G.

Theorem 19. Suppose G ∈ Rny×nu
sp and P ∈ R(nz+ny)×(nw+nu)

p , and suppose P is

stabilizable. Then K stabilizes P if and only if K stabilizes G.

Proof. See, for example, Chapter 4 of [9].

4.2 Parameterization of Stabilizing Controllers

In this section, we review one well-known approach to solution of the feedback opti-

mization problem (4.1) when the constraint that K lie in S is not present. In this

case, one may use the following standard change of variables.

For a given system P , all controllers that stabilize the system may be parameter-

ized using the well-known Youla parameterization [33], stated below.

Theorem 20. Suppose we have a doubly coprime factorization of G over RH∞, that

is, Ml, Nl, Xl, Yl,Mr, Nr, Xr, Yr ∈ RH∞ such that G = NrM
−1
r = M−1

l Nl and

[
Xl −Yl
−Nl Ml

][
Mr Yr

Nr Xr

]
= I

Then the set Cstab of all controllers in Rp which stabilize G is

Cstab =
{

(Yr −MrQ)(Xr −NrQ)−1
∣∣ Xr −NrQ is invertible, Q ∈ RH∞

}

Furthermore, the set of all closed-loop maps achievable with stabilizing controllers is

{
f(P,K)

∣∣ K ∈ Rp, K stabilizes P
}

=
{
T1 − T2QT3

∣∣ Xr −NrQ is invertible, Q ∈ RH∞
}

(4.2)
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where T1, T2, T3 ∈ RH∞ are given by

T1 = P11 + P12YrMlP21

T2 = P12Mr

T3 = MlP21

Proof. See, for example, Chapter 4 of [9].

This parameterization is particularly simple to construct in the case where we

have a nominal stabilizing controller Knom ∈ RH∞; that is, a controller which is both

stable and stabilizing.

Theorem 21. Suppose G is strictly proper, and Knom ∈ Cstab ∩ RH∞. Then all

stabilizing controllers are given by

Cstab =
{
Knom − h

(
h(Knom, G), Q

) ∣∣ Q ∈ RH∞
}

and all closed-loop maps are given by (4.2) where

T1 = P11 + P12Knom(I −GKnom)−1P21

T2 = −P12(I −KnomG)−1

T3 = (I −GKnom)−1P21

(4.3)

Proof. A doubly coprime factorization for G over RH∞ is given by

Ml = (I −GKnom)−1 Mr = −(I −KnomG)−1

Nl = G(I −KnomG)−1 Nr = −G(I −KnomG)−1

Xl = −I Yl = −Knom Xr = I Yr = Knom
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Then

(Yr −MrQ)(Xr −NrQ)−1

= Knom +Q(I +G(I −KnomG)−1Q)−1

= Knom − h
(
h(Knom, G), Q

)

so all stabilizing controllers are given by

Cstab =
{
Knom − h

(
h(Knom, G), Q

) ∣∣ Q ∈ RH∞
}

The invertibility condition is met since G, and thus Nr, is strictly proper.

This theorem tells us that if the plant is strongly stabilizable, that is, it can be

stabilized by a stable controller, then given such a controller, we can parameterize

the set of all stabilizing controllers. See [34] for a discussion of this, and [1] for an

extension to nonlinear control. The parameterization above is very useful, since in

the absence of the constraint K ∈ S, problem (4.1) can be reformulated as

minimize ‖T1 − T2QT3‖
subject to Q ∈ RH∞

(4.4)

The closed-loop map is now affine in Q, and its norm is therefore a convex func-

tion of Q. This problem is readily solvable by, for example, the techniques in [4].

After solving this problem to find Q, one may then construct the optimal K for

problem (4.1) via K = Knom − h
(
h(Knom, G), Q

)
.

4.3 Parameterization of Admissible Controllers

We now wish to extend the above result to parameterize all stabilizing controllers

K ∈ Rp which also satisfy the information constraint K ∈ S. Applying the above
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change of variables to problem (4.1), we arrive at the following optimization problem.

minimize ‖T1 − T2QT3‖
subject to Q ∈ RH∞

Knom − h
(
h(Knom, G), Q

)
∈ S

(4.5)

However, the set of all Q which satisfy this last constraint is not convex in general,

and hence this problem is not easily solved. We thus develop conditions under which

this set is in fact convex, so that the optimization problem (4.5) may be solved via

convex programming. First we state a preliminary lemma.

Lemma 22. Suppose G ∈ Rsp, S ⊆ Rp is a closed subspace, and Knom ∈ Cstab ∩
RH∞ ∩ S. Then S is quadratically invariant under h(Knom, G) if and only if

S =
{
Knom − h

(
h(Knom, G), Q

) ∣∣ Q ∈ S
}

Proof. ( =⇒ ) Suppose S is quadratically invariant under h(Knom, G), and further

suppose there exists Q ∈ S such that

K = Knom − h
(
h(Knom, G), Q

)
.

Since S is quadratically invariant under h(Knom, G) and S is an inert subspace, The-

orem 18 implies that h
(
h(Knom, G), Q

)
∈ S , and since Knom ∈ S as well, K ∈ S.

Now suppose K ∈ S. Let

Q = h
(
h(Knom, G), Knom −K

)
.

We know Knom − K ∈ S, and since S is quadratically invariant under h(Knom, G),

then by Theorem 18, we also have Q ∈ S.

( ⇐= ) Now suppose S is not quadratically invariant under h(Knom, G). Then

by Theorem 18 there exists Q ∈ S such that h
(
h(Knom, G), Q

)
/∈ S, and thus K =

Knom − h
(
h(Knom, G), Q

)
/∈ S.

This lemma shows that if we can find a stable Knom ∈ S which is stabilizing, and
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if the condition that S is quadratically invariant under h(Knom, G) holds, then the

set of all stabilizing admissible controllers can be easily parameterized with the same

change of variables from Theorem 21. We now simplify this condition.

Main result - optimal stabilization. The following theorem is the main result

of this chapter. It states that if the constraint set is quadratically invariant under

the plant, then the information constraints on K are equivalent to affine constraints

on the Youla parameter Q. Specifically, the constraint K ∈ S is equivalent to the

constraint Q ∈ S.

Theorem 23. Suppose G ∈ Rsp, S ⊆ Rp is a closed subspace, and Knom ∈ Cstab ∩
RH∞ ∩ S. If S is quadratically invariant under G then

S =
{
Knom − h

(
h(Knom, G), Q

) ∣∣ Q ∈ S
}

Proof. If S is quadratically invariant under G, then G ∈ S?. Further, by Theo-

rem 4, S? is quadratically invariant under Knom, and then by Theorem 18, we have

h(Knom, S
?) = S?. We then have h(Knom, G) ∈ S?, and therefore S is quadratically

invariant under h(Knom, G). By Lemma 22, this yields the desired result.

Remark 24. When P is stable, we can choose Knom = 0 and the parameterization

reduces to hG(Q).

Remark 25. When S = Rnu×ny
p , which corresponds to centralized control, then the

quadratic invariance condition is met and the result reduces to Theorem 21.

4.4 Equivalent Convex Problem

When the constraint set is quadratically invariant under the plant, we now have

the following equivalent problem. Suppose G ∈ Rny×nu
sp and S ⊆ Rnu×ny

p is a

closed subspace. Then K is optimal for problem (4.1) if and only if K = Knom −
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h
(
h(Knom, G), Q

)
and Q is optimal for

minimize ‖T1 − T2QT3‖
subject to Q ∈ RH∞

Q ∈ S
(4.6)

where T1, T2, T3 ∈ RH∞ are given by equations (4.3). This problem may be solved

via convex programming.

4.5 Convexity without Strong Stabilizability

Suppose that one cannot find a Knom ∈ Cstab ∩ RH∞ ∩ S; that is, a controller with

the admissible structure which is both stable and stabilizing. This may occur either

because the plant is not strongly stabilizable, or simply because it is difficult to find.

In this section we will show that problem (4.1) can still be reduced to a convex

optimization problem, albeit one which is less straightforward to solve.

We will achieve this by bypassing the Youla parameterization, and using the

change of variables previously associated with stable or bounded plants

R = hG(K) = −K(I −GK)−1

where R will be used instead of Q to elucidate that this is not a Youla parameter.

The key observation is that internal stabilization is equivalent to an affine constraint

in this parameter.

The constraint that K stabilize G, which is equivalent to the constraint that K

stabilize P when the standard conditions of Theorem 19 hold, is defined as requiring

that the maps from (v1, v2) to (u, y) in Figure 4.1 belong to RH∞. This can be stated

explicitly as [
(I −KG)−1 (I −KG)−1K

G(I −KG)−1 G(I −KG)−1K

]
∈ RH∞
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Making use of the relations

(I −GK)−1G = G(I −KG)−1

(I −KG)−1 = I +K(I −GK)−1G

we find that K stabilizes G if and only if

[
RG R

G−GRG GR

]
∈ RH∞ (4.7)

Suppose G ∈ Rny×nu
sp and S ⊆ Rnu×ny

p is a quadratically invariant closed subspace.

We may then use this result to transform the stabilization constraint of problem (4.1)

and Theorem 18 to transform the information constraint to obtain the following

equivalent problem. K is optimal for problem (4.1) if and only if K = hG(R) and R

is optimal for

minimize ‖P11 − P12RP21‖

subject to

[
RG R

G−GRG GR

]
∈ RH∞

R ∈ S

(4.8)

This is a convex optimization problem. Its solution is discussed in Section 6.1.2.



Chapter 5

Specific Constraint Classes

In this section we apply these results to specific constraint classes. Armed with our

findings on quadratic invariance, many useful results easily follow. In Section 5.1

we consider sparsity constraints. We develop a computational test for quadratic

invariance of sparsity constraints, and show that norm minimization subject to such

constraints that pass the test is a convex optimization problem. We also see an

interesting negative result, that perfectly decentralized control is never quadratically

invariant. In Section 5.2 we show that symmetric synthesis is quadratically invariant,

and thus convex. In Section 5.3 we consider the problem of control over networks with

delays. We show that if the controllers can communicate faster than the dynamics

propagate along any link, then norm-optimal controllers may be found via convex

programming.

5.1 Sparsity Constraints

Many problems in decentralized control can be expressed in the form of problem (1.1),

where S is the set of controllers that satisfy a specified sparsity constraint. In this

section, we provide a computational test for quadratic invariance when the subspace

S is defined by block sparsity constraints. First we introduce some notation.

38
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Suppose Abin ∈ {0, 1}m×n is a binary matrix. We define the subspace

Sparse(Abin) =
{
B ∈ Rp | Bij(jω) = 0 for all i, j

such that Abin
ij = 0 for almost all ω ∈ R

}

Also, if B ∈ Rsp, let Abin = Pattern(B) be the binary matrix given by

Abin
ij =





0 if Bij(jω) = 0 for almost all ω ∈ R
1 otherwise

Note that in this section, we assume that matrices of transfer functions are indexed by

blocks, so that above, the dimensions of Abin may be much smaller than those of B.

Then, Kbin
kl determines whether controller k may use measurements from subsystem

l, Kkl is the map from the outputs of subsystem l to the inputs of subsystem k, and

Gij represents the map from the inputs to subsystem j to the outputs of subsystem

i.

5.1.1 Computational Test

We seek an explicit test for quadratic invariance of a constraint set defined by such a

binary matrix. We first prove two preliminary lemmas.

Lemma 26. Suppose S = Sparse(Kbin), and let Gbin = Pattern(G). If S is quadrat-

ically invariant under G, then

Kki = 0 or Kjl = 0 for all (i, j, k, l) and K such that Kbin
kl = 0, Gbin

ij = 1, K ∈ S

Proof. Suppose there exists (i, j, k, l) and K such that

Kbin
kl = 0, Gbin

ij = 1, K ∈ S

but

Kki 6= 0 and Kjl 6= 0
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Then we must have

Kbin
ki = 1, Kbin

jl = 1, i 6= l, j 6= k

Consider K ∈ S such that

Kab = 0 if (a, b) /∈ {(k, i), (j, l)}

Then

(KGK)kl =
∑

r

∑

s

KkrGrsKsl = KkiGijKjl

Since Gij 6= 0, we can easily choose Kki and Kjl such that (KGK)kl 6= 0. So

KGK /∈ S and S is not quadratically invariant.

Lemma 27. Suppose S = Sparse(Kbin), and let Gbin = Pattern(G). If

Kki = 0 or Kjl = 0 for all (i, j, k, l) and K such that Kbin
kl = 0, Gbin

ij = 1, K ∈ S

Then

Kbin
ki K

bin
jl = 0 for all (i, j, k, l) such that Kbin

kl = 0, Gbin
ij = 1

Proof. We show this by contradiction. Suppose there exists (i, j, k, l) such that

Kbin
kl = 0, Gbin

ij = 1, Kbin
ki K

bin
jl 6= 0.

Then

Kbin
ki = Kbin

jl = 1

and hence it must follow that there exists K ∈ S such that Kki 6= 0 and Kjl 6= 0.

The following is the main result of this section. It provides a computational test

for quadratic invariance when S is defined by sparsity constraints. It also equates

quadratic invariance with a stronger condition.

Theorem 28. Suppose S = Sparse(Kbin), and let Gbin = Pattern(G). Then the

following are equivalent:
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(i) S is quadratically invariant under G

(ii) KGJ ∈ S for all K, J ∈ S

(iii) Kbin
ki Gbin

ij Kbin
jl (1−Kbin

kl ) = 0 for all i, l = 1, . . . , ny and j, k = 1, . . . , nu

Proof. We will show that (i) =⇒ (iii) =⇒ (ii) =⇒ (i). Suppose S is

quadratically invariant under G. Then by Lemma 26,

Kki = 0 or Kjl = 0 for all (i, j, k, l) and K such that Kbin
kl = 0; Gbin

ij = 1; K ∈ S

and by Lemma 27,

Kbin
ki K

bin
jl = 0 for all (i, j, k, l) such that Kbin

kl = 0, Gbin
ij = 1

which can be restated

Kbin
ki Gbin

ij Kbin
jl (1−Kbin

kl ) = 0

and which implies that

Kki = 0 or Jjl = 0 for all (i, j, k, l), K, J such that Kbin
kl = 0; Gbin

ij = 1; K, J ∈ S

which clearly implies

(KGJ)kl =
∑

i

∑

j

KkiGijJjl = 0 for all (k, l), K, J such that Kbin
kl = 0;K, J ∈ S

and thus

KGJ ∈ S for all K, J ∈ S

which is a stronger condition than quadratic invariance and hence implies (i).

This result shows us several things about sparsity constraints. In this case quadratic

invariance is equivalent to another condition which is stronger in general. When G

is symmetric, for example, the subspace consisting of symmetric K is quadratically
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invariant but does not satisfy condition (ii). Condition (iii), which gives us the com-

putational test we desired, shows that quadratic invariance can be checked in time

O(n4), where n = max{nu, ny}. It also shows that, if S is defined by sparsity con-

straints, then S is quadratically invariant under G if and only if it is quadratically

invariant under all systems with the same sparsity pattern.

5.1.2 Sparse Synthesis

The following theorem shows that for sparsity constraints, the test in Section 5.1 can

be used to identify tractable decentralized control problems.

Theorem 29. Suppose G ∈ Rsp and Knom ∈ Cstab ∩ RH∞ ∩ S. Further suppose

Gbin = Pattern(G) and S = Sparse(Kbin) for some Kbin ∈ {0, 1}nu×ny . If

Kbin
ki Gbin

ij Kbin
jl (1−Kbin

kl ) = 0 for all i, l = 1, . . . , ny and j, k = 1, . . . , nu

then

S =
{
Knom − h

(
h(Knom, G), Q

)
| Q ∈ S

}

Proof. Follows immediately from Theorems 23 and 28.

5.1.3 Example Sparsity Patterns

We apply this test to examine a few specific sparsity structures.

Skyline structure

Consider matrices for which any non-zero entry must have non-zero entries below it,

and more formally, define a matrix A ∈ Cm×n to be a skyline matrix if for all

i = 2, . . . ,m and all j = 1, . . . , n,

Ai−1,j = 0 if Ai,j = 0



5.1. SPARSITY CONSTRAINTS 43

An example is

Kbin =




0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

1 1 1 0 0

1 1 1 0 1




Suppose G is lower triangular and Kbin is a lower triangular skyline matrix. Then

S = Sparse(Kbin) is quadratically invariant under G. Some numerical examples with

these structures are worked out in Section 6.2.

Plant and controller with the same structure

It is important to notice that G and S having the same sparsity structure does not

imply that S is quadratically invariant under G. For example, consider

G =




0 0 0

1 0 0

0 1 1




and let S = Sparse(G). Then S is not quadratically invariant, as G3 6∈ S.

Perfectly Decentralized Control

We now show an interesting negative result. Let nu = ny, so that each subsystem has

its own controller as in Figure 1.1.

Corollary 30. Suppose there exists i, j, with i 6= j, such that Gij 6= 0. Suppose Kbin

is diagonal and S = Sparse(Kbin). Then S is not quadratically invariant under G.

Proof. Let Gbin = Pattern(G). Then

Kbin
ii Gbin

ij Kbin
jj (1−Kbin

ij ) = 1

The result then follows from Theorem 28.
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It is important to note that the plant and controller do not have to be square to

apply this result because of the block notation used in this section. This corollary

tells us that if each subsystem has its own controller which may only use sensor

information from its own subsystem, and any subsystem affects any other, then the

system is not quadratically invariant. In other words, perfectly decentralized control

is never quadratically invariant except for the trivial case where no subsystem affects

any other.

5.2 Symmetric Constraints

The following shows that when the plant is symmetric, the methods introduced in this

thesis could be used to find the optimal symmetric stabilizing controller. Symmetric

synthesis is a well-studied problem, and there are many techniques that exploit its

structure. Therefore, the methods in this thesis are possibly not the most efficient.

However, it is important to note the quadratic invariance of this structure because it

defied earlier attempts to classify solvable problems. This arises because a symmetric

matrix multiplied by another, i.e. KG, is not guaranteed to yield a symmetric matrix,

but a symmetric matrix left and right multiplied by the same symmetric matrix, i.e.

KGK, will indeed.

Theorem 31. Suppose

Hn =
{
A ∈ Cn×n

∣∣ A = A∗
}

and

S = {K ∈ Rp | K(jω) ∈ Hn for almost all ω ∈ R}.

Further suppose Knom ∈ Cstab∩RH∞∩S and G ∈ Rsp with G(jω) ∈ Hn for almost all ω ∈
R. Then

S =
{
Knom − h

(
h(Knom, G), Q

)
| Q ∈ S

}

Proof. Follows immediately from Theorem 23.
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5.3 Control over Networks with Delays

In this section we consider the problem of multiple subsystems, each with its own

controller, such that the dynamics of each subsystem may effect those of other sub-

systems with some propagation delay, and the controllers may communicate with

each other with some transmission delays. We again seek to synthesize linear con-

trollers to minimize a closed-loop norm for the entire interconnected system. There is

no known tractable solution for arbitrary propagation and transmission delays. This

section uses the results from the previous chapters to find simple conditions on the

delays such that this optimal control problem may be cast as a convex optimization

problem.

We find that if the transmission delays satisfy the triangle inequality, and if the

propagation delay between any pair of subsystems is at least as large as the trans-

mission delay between those subsystems, then the problem is quadratically invariant.

In other words, if data can be transmitted faster than dynamics propagate along any

link, then optimal controller synthesis may be formulated as a convex optimization

problem.

It is important to note the extreme generality of this framework and of this result.

It holds for discrete-time systems and continuous-time systems. It holds for any norm

that we wish to minimize. It does not assume that the dynamics of any subsystem

are the same as those of any other, and they may all be completely different types of

objects. Most importantly, the delay between any two subsystems is not assumed to

have any relationship whatsoever to other delays in the system. They may be assigned

independently for each link. Only in the final examples do we assume otherwise.

Prior Work

A vast amount of prior work on optimal control over networks assumes that the

actions of any subsystem have no effect on the dynamics of other subsystems. For a

few other specific structures, some of which are mentioned in Section 1.1, tractable

methods have been found. One of the first problems of this nature to be studied was

the one-step delayed information sharing problem. This problem assumes that each
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subsystem has a controller which can see its own output immediately, and can see

outputs from all other subsystems after a delay of one time step. This problem has

long been known to admit tractable solutions [31], and has also been studied more

recently in an LFT framework [26]. An interesting class of spatio-temporal systems

that allow for convex synthesis of optimal controllers was identified in [2], and named

funnel causal systems. One of the tractable structures discussed in [16] involved

evenly spaced subsystems which can pass measurements on at the same speed that

the dynamics propagate, and [20] included a similar class of evenly spaced systems

where the bound was found such that if the communication speed exceeded that

bound the problem was amenable to convex synthesis.

These results are all unified and generalized by the simple conditions found in this

section.

Section Outline

In Section 5.3.1, we develop some notation, define the propagation and transmission

delays, explain why we may assume that the transmission delays satisfy the triangle

inequality, and formulate the problem we wish to solve.

Section 5.3.2 contains the main result of the section, where we prove that if this

triangle inequality is satisfied, and if the propagation delay associated with any pair

of subsystems is at least as large as the associated transmission delay, then the infor-

mation constraint is quadratically invariant, and thus, optimal control may be cast

as a convex optimization problem.

In Section 5.3.3 we break these total transmission delays out into a pure trans-

mission delay, representing the time it takes to communicate the information from

one subsystem to another, and a computational delay, representing the time it takes

to process the information before it is used by the controller. We find, somewhat

surprisingly, that transmitting faster than the propagation of dynamics still guaran-

tees convexity, and in fact, that the computational delay causes the condition to be

relaxed.

We then consider a few more specific examples in Section 5.3.4. First is an example

corresponding to a very general problem of the control of vehicles in formation. The
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vehicles may have arbitrary positions, their dynamics propagate at a constant speed,

and they communicate their measurements at a constant speed. The optimal control

problem is amenable to convex synthesis as long as the communication speed exceeds

the propagation speed. Even though this itself is a broad generalization of previously

identified tractable classes, it follows almost immediately from the results of this

section. Conditions are then derived for convexity of optimal control over a lattice,

for two different types of assumptions on the propagation of dynamics.

Finally in Section 5.3.5, we show how all of these results can be generalized to

the case where the dynamics of each subsystem may effect those of other subsystems

either with some propagation delay, or not at all, and any controller may communicate

with any other either with some transmission delay, or not at all. In other words,

delay constraints and sparsity constraints are combined.

5.3.1 Delays

We define Delay(·) to give the delay associated with a time-invariant causal operator

Delay(W ) = arg inf
τ>0

w(τ) 6= 0 where w is the impulse response of W

Note that we then have the following inequalities for the delays of a composition

or an addition of operators:

Delay(AB) ≥ Delay(A) + Delay(B)

Delay(A+B) ≥ min{Delay(A),Delay(B)}

Propagation Delays

Suppose there are n subsystems. For any pair of subsystems i and j we define the

propagation delay pij as the amount of time before a controller action at subsystem

j can affect an output at subsystem i as such

pij = Delay(Gij) for all i, j ∈ 1, . . . , n
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Transmission Delays

For any pair of subsystems k and l we define the (total) transmission delay tkl as the

minimum amount of time before the controller of subsystem k may use outputs from

subsystem l. Given these constraints, we can define the overall subspace of admissible

controllers S such that K ∈ S if and only if

Delay(Kkl) ≥ tkl for all k, l ∈ 1, . . . , n

In Section 5.3.3 we will break these total transmission delays out into a pure

transmission delay, representing the time it takes to communicate the information

from one subsystem to another, and a computational delay, representing the time it

takes to process the information before it is used by the controller.

Triangle inequality

For the main result of this section, we will assume that the triangle inequality holds

amongst the transmission delays, that is,

tki + tij ≥ tkj for all k, i, j

This is typically a very reasonable assumption for the following reasons. tkj is defined

as the minimum amount of time before controller k can use outputs from subsystem

j. So if there existed an i such that the inequality above failed, that would mean

that controller k could receive that information more quickly if it came indirectly via

controller i. We would thus reroute this information to go through i, tkj would be

reset to tki + tij, and the inequality would hold.

To put it another way, we could think of each subsystem as a node on a directed

graph, with the initial distance from any node j to any node k as tkj, the time it

takes before controller k can directly use outputs from subsystem j. We then want to

find the shortest overall time for any controller k to use outputs from any subsystem

j, that is, the shortest path from node j to node k. So to find our final tkj’s, we run

Bellman-Ford or another shortest path algorithm on our initial graph [14], and the
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resulting delays are thus guaranteed to satisfy the triangle inequality.

5.3.2 Conditions for Convexity

Given a generalized plant P and transmission delays tkl for each pair of subsystems,

we define S as above, and then seek to solve problem (1.1). The delays associated

with dynamics propagating from one subsystem to another are embedded in P . The

subspace of admissible controllers, S, has been defined to encapsulate the constraints

on how quickly information may be passed from one subsystem to another.

We first provide a necessary and sufficient condition for quadratic invariance in

terms of these delays, which is derived fairly directly from our definitions.

Theorem 32. Suppose that G and S are defined as above. S is quadratically invariant

under G if and only if

tki + pij + tjl ≥ tkl for all i, j, k, l (5.1)

Proof. Given K ∈ S,

KGK ∈ S ⇐⇒ Delay
(
(KGK)kl

)
≥ tkl for all k, l

We now seek conditions that cause this to hold.

(KGK)kl =
∑

i

∑

j

KkiGijKjl

and so for any k and l,

Delay
(
(KGK)kl

)

≥ min
i,j
{Delay(KkiGijKjl)}

≥ min
i,j
{Delay(Kki) + Delay(Gij) + Delay(Kjl)}

≥ min
i,j
{tki + pij + tjl}
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Thus S is quadratically invariant under G if

min
i,j
{tki + pij + tjl} ≥ tkl for all k, l

which is equivalent to

tki + pij + tjl ≥ tkl for all i, j, k, l

Now suppose that Condition (5.1) fails. Then there exists i, j, k, l such that

tki + pij + tjl < tkl

Consider K such that

Kab = 0 if (a, b) /∈ {(k, i), (j, l)}

Then

(KGK)kl =
∑

r

∑

s

KkrGrsKsl = KkiGijKjl

Since Delay(Gij) = pij, we can easily choose Kki and Kjl such that Delay(Kki) = tki,

Delay(Kjl) = tjl, and

Delay
(
(KGK)kl

)
= tki + pij + tjl

So K ∈ S but KGK /∈ S and thus S is not quadratically invariant under G.

Main Result - networks. The following is the main result of this section. It states

that if the transmission delays satisfy the triangle inequality, and if the propagation

delay between any pair of subsystems is at least as large as the transmission delay

between those subsystems, then the information constraint is quadratically invariant.

In other words, if data can be transmitted faster than dynamics propagate along any

link, then optimal controller synthesis may be cast as a convex optimization problem.

Theorem 33. Suppose that G and S are defined as above, and that the transmission
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delays satisfy the triangle inequality. If

pij ≥ tij for all i, j (5.2)

then S is quadratically invariant under G.

Proof. Suppose Condition (5.2) holds. Then for all i, j, k, l we have

tki + pij + tjl ≥ tki + tij + tjl

≥ tkl by the triangle inequality

and thus by Theorem 32, S is quadratically invariant under G.

Thus we have shown that the triangle inequality and Condition (5.2) are sufficient

for quadratic invariance. The following remarks discuss assumptions under which

they are necessary as well.

Remark 34. If we assume that tii = 0 for all i, that is, that there is no delay before

a subsystem’s controller may use its own outputs, then we consider Condition (5.1)

with k = i, l = j and see that Condition (5.2) is necessary for quadratic invariance.

Remark 35. If we assume that pii = 0 for all i, that is, that there is no delay before

a subsystem’s controller actions affect its own dynamics, then we consider Condi-

tion (5.1) with i = j and see that the triangle inequality is necessary for quadratic

invariance.

5.3.3 Computational Delays

In this section, we consider what happens when the controller of each subsystem

has a computational delay ci associated with it. The delay for controller i to use

outputs from subsystem j, the total transmission delay, is then broken up into a pure

transmission delay and this computational delay, as follows

tij = ci + t̃ij
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If we were to assume that the triangle inequality held for the total transmission delays

tij as before, then we would simply get the same results as in the previous section

with the substitution above. In particular, we would find pij ≥ ci + t̃ij to be the

condition for quadratic invariance. However, there are many cases where it makes

sense to instead assume that the triangle inequality holds for the pure transmission

delays t̃ij, which is a stronger assumption. An example where such is clearly the case

is provided in Section 5.3.4.

In this section we derive conditions for quadratic invariance when we can assume

that the triangle inequality holds for the pure transmission delays t̃ij, and get a

surprising result.

As before, the propagation delays are defined as

pij = Delay(Gij) for all i, j

and S is now defined such that K ∈ S if and only if

Delay(Kkl) ≥ ck + t̃kl for all k, l

Thus the necessary and sufficient condition for quadratic invariance from Theo-

rem 32 becomes

ck + t̃ki + pij + cj + t̃jl ≥ ck + t̃kl for all i, j, k, l

which reduces to

t̃ki + pij + cj + t̃jl ≥ t̃kl for all i, j, k, l (5.3)

The following theorem gives conditions under which the information constraint is

quadratically invariant. It states that if the triangle inequality holds amongst the pure

transmission delays, and if Condition (5.4) holds, then the information constraint

is quadratically invariant. Surprisingly, we see that the computational delay now

appears on the left side of the inequality. In other words, not only does transmitting
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data faster than dynamics propagate still allow for convex synthesis when we account

for computational delay, but the condition is actually relaxed.

Theorem 36. Suppose that G and S are defined as above, and that the pure trans-

mission delays satisfy the triangle inequality. If

pij + cj ≥ t̃ij for all i, j (5.4)

then S is quadratically invariant under G.

Proof. Suppose Condition (5.4) holds. Then for all i, j, k, l we have

t̃ki + pij + cj + t̃jl ≥ t̃ki + t̃ij + t̃jl

≥ t̃kl by the triangle inequality

and thus Condition (5.3) holds and S is quadratically invariant under G.

Thus we have shown that the triangle inequality and Condition (5.4) are sufficient

for quadratic invariance. The following remark discusses an assumption under which

the condition is necessary as well.

Remark 37. If we assume that t̃ii = 0 for all i, that is, that there is no additional

delay before a subsystem’s controller may use its own outputs, other than the com-

putational delay, then we consider Condition (5.3) with k = i, l = j and see that

Condition (5.4) is necessary for quadratic invariance. Since the computational delay

has been extracted, this is now a very reasonable assumption which is essentially true

by definition.

5.3.4 Network Examples

We consider here some special cases.

Vehicle Formation Example

We now consider an important special case, which corresponds to the problem of

controlling multiple vehicles in a formation.
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Suppose there are n subsystems (vehicles), with positions x1, . . . , xn ∈ Rd. Typi-

cally, we’ll have d = 3, but these results hold for arbitrary d.

K31

G1

K31

G2

K31

G3

K31

G4 K31

G5

Figure 5.1: Communication and propagation in all directions

Let R represent the maximum distance between any two subsystems

R = max
i,j
‖xi − xj‖

For most applications of interest the appropriate norm throughout this section

would be the Euclidean norm, but these results hold for arbitrary norm on Rd.
We suppose that dynamics of all vehicles propagate at a constant speed, deter-

mined by the medium, such that the propagation delays are proportional to the

distance between vehicles, as illustrated in Figure 5.1.

Let γp be the amount of time it takes dynamics to propagate one unit of distance,

i.e., the inverse of the speed of propagation. For example, when considering formations

of aerial vehicles, γp would equal the inverse of the speed of sound.

The system G is then such that

Delay(Gij) = γp‖xi − xj‖ for all i, j

We similarly suppose that data can be transmitted at a constant speed, such that

the transmission delays are proportional to the distances between vehicles, such as if

each vehicle could broadcast its information to the others. This is also illustrated in

Figure 5.1.
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Let γt be the amount of time it takes to transmit one unit of distance, i.e., the

inverse of the speed of transmission. Let C be the computational delay at each vehicle.

The set of admissible controllers is then defined such that K ∈ S if and only if

Delay(Kkl) ≥ C + γt‖xk − xl‖ for all k, l

We can now apply Theorem 36 with

pij = γp‖xi − xj‖, t̃ij = γt‖xi − xj‖, and ci = C for all i and j

Clearly, t̃ii = 0 for all i as in Remark 37, so the conditions of Theorem 36 are both

necessary and sufficient for quadratic invariance.

Theorem 38. Suppose that G and S are defined as above. S is quadratically invariant

under G if and only if

γp +
C

R
≥ γt

Proof. Since any norm satisfies the triangle inequality, the pure transmission delays

clearly satisfy the triangle inequality, so applying Theorem 36, S is quadratically

invariant under G if and only if

γp‖xi − xj‖+ C ≥ γt‖xi − xj‖ for all i, j

which is equivalent to

γp +
C

R
≥ γt

Thus we see that, in the absence of computational delay, finding the minimum-

norm controller may be reduced to a convex optimization problem when the speed of

transmission is faster than the speed of propagation; that is, when γp ≥ γt. We also

see that this not only remains true in the presence of computational delay, but that

we get a buffer relaxing the condition.

A similar result was previously achieved for a very specific case of vehicles equally

spaced along a line [22]. This shows how the results of this section allow us to
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effortlessly generalize to the case considered in this subsection, where the vehicles

have arbitrary positions in arbitrary dimensions. This is a crucial generalization for

applications to realistic formation flight problems.

Two-Dimensional Lattice Example

In this subsection we will consider subsystems distributed in a lattice, and use these

results to derive the conditions for convexity of the associated optimal decentralized

control problem.

We first consider the case where the controllers can communicate along the edges

of the lattice with a delay of t, and the dynamics similarly propagate along the edges

with a delay of p, as illustrated in Figure 5.2.

Dt Dt Dt

Dt

Dt Dt

Dt

Dt

Dt

Dt

Dt

DtK11 K12 K13

K23K22K21

K31 K32 K33

G11 G12 G13

G23G22G21

G31 G32 G33

Dp

Dp

Dp

Dp

Dp

Dp

Dp

Dp Dp

Dp Dp

Dp

Figure 5.2: Two-dimensional lattice with dynamics propagating along edges

It is a straightforward consequence of this section that the optimal controllers may

be synthesized with convex programming if

p ≥ t

We now consider a more interesting variant, where the controllers again commu-

nicate only along the edges of the lattice, but now the dynamics propagate in all

directions, as illustrated in Figure 5.3.
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Dt Dt Dt

Dt

Dt Dt

Dt

Dt

Dt

Dt

Dt

DtK11 K12 K13

K23K22K21

K31 K32 K33

G12 G13

G23G22

G32 G33

G11

G21

G31

Figure 5.3: Two-dimensional lattice with dynamics propagating in all directions

Let γp be the amount of time it takes for the dynamics to propagate one unit

of distance. Along a diagonal, for instance, between G11 and G22, the propagation

delay is γp
√

2 and the transmission delay is 2t. The condition for convexity therefore

becomes

γp ≥ t
√

2

5.3.5 Combining Sparsity and Delay Constraints

In this section, we will discuss how sparsity constraints may be considered a special

case of the framework analyzed in this section. We show how the two can be combined

to handle the very general, realistic case of a network where some nodes are connected

with delays as above and others are not connected at all. An explicit test for quadratic

invariance in this case will be provided.

The key observation is that a sparsity constraint may be considered an infinite

delay. We thus define an extended notion of propagation and transmission delays,

where they are assigned to be sufficiently large when they do not exist, and then the

results from the rest of this section may be applied to test for quadratic invariance

and convexity.
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Propagation Delays

We now consider a plant for which the controllers of certain subsystems may or

may not have any effect on other subsystems, and when they do, there may be a

propagation delay associated with that effect. First, let

Gbin = Pattern(G)

as in Section 5.1, so that Gbin
ij = 0 if subsystem i is not affected by inputs to subsystem

j. We would then like to define the propagation delay pij to be extremely large if this

is the case, as such

pij =





Delay(Gij) if Gbin
ij = 1

H if Gbin
ij = 0

for some large H.

Transmission Delays

As in Section 5.1, we first assign a binary matrix Kbin such that Kbin
kl = 0 if controller

k may never use outputs from subsystem l. For any other pair of subsystems k and l

we define the (total) transmission delay tkl as in the rest of this section; that is, as the

minimum amount of time before the controller of subsystem k may use outputs from

subsystem l. Given these constraints, we can define the overall subspace of admissible

controllers S such that K ∈ S if and only if

Delay(Kkl) ≥ tkl for all k, l such that Kbin
kl = 1

Kkl = 0 for all k, l such that Kbin
kl = 0

We wish to assign a very large transmission delay to the latter case, and so define

tkl = H for all k, l such that Kbin
kl = 0

for the same large H as above.
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Condition for Convexity

Given these extended definitions of propagation delays and transmission delays for a

combination of sparsity and delay constraints, we can now test for quadratic invari-

ance using Theorem 32.

These definitions of extended delays along with our definition of the constraint set

S allow us to use this and the rest of the results of this section as long as H has been

chosen large enough. Condition (5.1) is indeed necessary and sufficient for quadratic

invariance as long as

H > 2 max{tkl}+ max{pij}

where of course the first maximum is taken over all k, l such that Kbin
kl = 1 and the

second is taken over all i, j such that Gbin
ij = 1. This arises because Condition (5.1)

must fail if Kbin
kl = 0, but Kbin

ki = Gbin
ij = Kbin

jl = 1.



Chapter 6

Computation of Optimal

Controllers

This chapter considers the computation of solutions to the convex optimization prob-

lems that have been identified and formulated throughout this thesis. Solution pro-

cedures are given in Section 6.1 and numerical examples are provided in Section 6.2.

6.1 Solution Procedure

We show in this section that if we wish to minimize the H2-norm, one further change

of variables can be used in which the information constraint is eliminated.

In Section 6.1.1 problem (4.6) is then converted to an unconstrained problem

which may be readily solved. We focus on sparsity constraints, as in [21], but the

vectorization techniques in this section are easily applied to the other constraint

classes of Chapter 5 as well. A similar method was used for symmetric constraints

in [32].

In Section 6.1.2 we address the convex but more complex problem that was derived

in Section 4.5 for when a nominal stabilizing controller is not available. A solution

procedure is provided, and the implications for systematically finding stabilizing de-

centralized controllers are discussed.

60
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6.1.1 Removal of Information Constraint

For ease of presentation, we now make a slight change of notation from Section 5.1.

We no longer assume that the plant and controller are divided into blocks, so that

Kbin
kl now determines whether the kl index of the controller may be non-zero, rather

than determining whether controller k may use information from subsystem l, and Gij

similarly represents the ij index of the plant. Kbin therefore has the same dimension

as the controller itself. nu and ny represent the total number of inputs and outputs,

respectively.

Let

a =
nu∑

i=1

ny∑

j=1

Kbin
ij

such that a represents the number of admissible controls, that is, the number of

indices for which K is not constrained to be zero.

The following theorem gives the equivalent unconstrained problem.

Theorem 39. Suppose x is an optimal solution to

minimize ‖b+ Ax‖2

subject to x ∈ RH∞
(6.1)

where D ∈ Rnuny×a is a matrix whose columns form an orthonormal basis for vec(S),

and

b = vec(T1), A = −(TT
3 ⊗ T2)D.

Then Q = vec−1(Dx) is optimal for (4.6) and the optimal values are equivalent.

Proof. We know that

Q ∈ RHnu×ny
∞ ∩ S ⇐⇒ vec(Q) = Dx for some x ∈ RHa×1

∞
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Since

‖T1 − T2QT3‖2

= ‖vec(T1 − T2QT3)‖2 by definition of the H2-norm

= ‖vec(T1)− (TT
3 ⊗ T2) vec(Q)‖2 by Lemma 1

= ‖vec(T1)− (TT
3 ⊗ T2)Dx‖2

= ‖b+ Ax‖2

we have the desired result.

Therefore, we can find the optimal x for problem (6.1) using many available tools

for unconstrained H2-synthesis, with

P11 = b P12 = A P21 = 1 P22 = 01×a

then find the optimal Q for problem (4.6) as Q = vec−1(Dx), and finally, find the

optimal K for problem (4.1) as K = Knom − h
(
h(Knom, G), Q

)
.

6.1.2 Solution without Strong Stabilizability

We show in this section that vectorization can similarly be used to eliminate the

information constraint when a nominal stable and stabilizing controller can not be

found, as in Section 4.5. The resulting problem is not immediately amenable to

standard software, as in the previous section, but methods for obtaining its solution

are discussed.

Let D ∈ Rnuny×a be a matrix whose columns form an orthonormal basis for vec(S),

as in the previous section, and now let

f = vec(P11), E = −(PT
21 ⊗ P12)D,
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d =




0

vec(G)

0


 , C =




(GT ⊗ I)D

−(GT ⊗G)D

(I ⊗G)D




Using similar arguments as in the previous section, we find that we may solve the

following equivalent problem. Suppose x is an optimal solution to

minimize ‖f + Ex‖2

subject to d+ Cx ∈ RH∞
x ∈ RH∞

(6.2)

Then R = vec−1(Dx) is optimal for (4.8) and the optimal values are equivalent.

The optimal K for problem (4.1) could then be recovered as K = hG(R).

Remark 40. While A, b of problem (6.1) are stable, C, d, E, f of problem (6.2) may

very well be unstable. Notice also that G ∈ Rsp implies C, d ∈ Rsp.

Remark 41. The last constraint comes from the upper right-hand block of Condi-

tion (4.7), and the others come from the rest of that condition.

Remark 42. The relaxed problem

minimize ‖f + Ex‖2

subject to x ∈ RH∞
(6.3)

can be solved with standard software as described in the previous subsection, and gives

a lower bound on the solution. If the result is such that the entire constraint of

problem (6.2) is satisfied, then the optimal value has been achieved.

Remark 43. For any µ > 0 the following problem may be solved in the same standard
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manner

minimize

∥∥∥∥∥

[
f

µd

]
+

[
E

µC

]
x

∥∥∥∥∥
2

subject to x ∈ RH∞

(6.4)

and then the optimal value of x as well as the optimal value of the objective function

will approach those of problem (6.2) as µ approaches 0 from above.

A reasonable solution procedure for problem (6.2) would then be to first solve the

relaxed problem of Remark 42, and test whether d+Cx ∈ RH∞ for the optimal value.

If so, we are done and can recover the optimal K. If not, then solve problem (6.4)

for values of µ which decrease and approach 0. This procedure in no way requires a

controller that is both stable and stabilizing, so it is most useful when the plant is

actually not strongly stabilizable, and thus no such controller exists.

Alternatively, as long as P is stabilizable by some K ∈ S, the solution to prob-

lem (6.4) for any µ > 0 results in an x such that ‖d+ Cx‖2 is finite. Thus R =

vec−1(Dx) satisfies Condition (4.7), and K = hG(R) is both stabilizing and lies in S.

If it is also stable, we have then found a Knom ∈ Cstab∩RH∞∩S, and the procedures

from the rest of this thesis may be used to find the optimal decentralized controller.

This is ideal for the case where the plant is strongly stabilizable, but a stabilizing

controller is difficult to find with other methods.

The techniques discussed here and in Section 4.5 involve not only finding optimal

decentralized controllers, but also develop explicit procedures for first finding a sta-

bilizing decentralized controller when one is not available otherwise. As there are no

known systematic methods of finding stabilizing controllers for most quadratically in-

variant problems, this is an extremely important development, and an exciting avenue

for future research.

6.2 Numerical Examples

We apply our results to some specific numerical examples, first for sparsity constraints,

and then for delay constraints.
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6.2.1 Sparsity Examples

Consider an unstable lower triangular plant

G(s) =




1

s+ 1
0 0 0 0

1

s+ 1

1

s− 1
0 0 0

1

s+ 1

1

s− 1

1

s+ 1
0 0

1

s+ 1

1

s− 1

1

s+ 1

1

s+ 1
0

1

s+ 1

1

s− 1

1

s+ 1

1

s+ 1

1

s− 1




with P given by

P11 =

[
G 0

0 0

]
P12 =

[
G

I

]
P21 =

[
G I

]

and a sequence of sparsity constraints Kbin
1 , . . . , Kbin

6

Kbin
1 =




0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 1 0 0 0

0 1 0 0 1




Kbin
2 =




0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 1 0 0 0

1 1 0 0 1




Kbin
3 =




0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

1 1 0 0 0

1 1 0 0 1




Kbin
4 =




0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

1 1 0 0 0

1 1 1 0 1




Kbin
5 =




0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

1 1 1 0 0

1 1 1 0 1




Kbin
6 =




1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1



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defining a sequence of information constraints Si = Sparse(Kbin
i ) such that each

subsequent constraint is less restrictive, and such that each is quadratically invariant

under G. We also use S7 as the set of controllers with no sparsity constraints; i.e.,

the centralized case. A stable and stabilizing controller which lies in the subspace

defined by any of these sparsity constraints is given by

Knom =




0 0 0 0 0

0
−6

s+ 3
0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0
−6

s+ 3




We can then find T1, T2, T3 as in (4.3), and then find the stabilizing controller

that minimizes the closed-loop norm subject to the sparsity constraints by solving

problem (6.1), as outlined in Section 6. The graph in Figure 6.1 shows the result-

ing minimum H2-norms for the six sparsity constraints as well as for a centralized

controller.

Information Constraint
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ti

m
a
l 
N

o
rm

Figure 6.1: Sensitivity of optimal performance to sparsity constraints
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6.2.2 Delay Examples

We consider a distributed control example like that of Figure 1.2. Let the plant be

such that

Gij(s) = 0.5|i−j|
1

s+ 1

so that the effect of inputs falls off for more distant subsystems.

Let the propagation delay be 0.5 seconds. We seek to minimize the closed-loop

H2-norm where the rest of the generalized plant is given as

P11 =

[
G 0

0 0

]
P12 =

[
G

ηI

]
P21 =

[
G I

]
η = 1e− 3

From the results of Section 5.3, and Section 5.3.4 in particular, we know that this

problem is quadratically invariant for any transmission delays up to 0.5 seconds, and

for any computational delays.

We first fix the computational delay at 0.1 seconds, and observe how the optimal

performance varies as the transmission delay decreases from 0.5 to 0 seconds. This

is shown in Figure 6.2, where the delay is indicated in tenths of a second, and the

performance of the optimal centralized controller is shown for comparison, which

corresponds to both a transmission delay and a computational delay of 0.

5 4 3 2 1 0 Centralized
1

1.1

1.2

1.3

1.4

Transmission Delay

O
pt

im
al

 N
or

m

Figure 6.2: Sensitivity of optimal performance to transmission delay

We then fix the transmission delay at 0.2 seconds, and observe how the optimal
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performance varies as the computational delay decreases from 0.5 to 0 seconds. This

is shown in Figure 6.3, where the delay is also indicated in tenths of a second, and

the performance of the optimal centralized controller is again shown for comparison.

5 4 3 2 1 0 Centralized
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1.3

1.4
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O
pt
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m

Figure 6.3: Sensitivity of optimal performance to computational delay

It is worth noting that even though the plants considered in this section are fairly

simple, the sparsity and delay constraints are such that nearly all of these problems

would have previously been considered to be intractable.



Chapter 7

Conclusion

We defined the notion of quadratic invariance of a constraint set with respect to

a plant. We showed in Theorems 10 and 18 that quadratic invariance is necessary

and sufficient for the constraint set to be preserved under feedback, for operators on

Banach spaces and extended spaces, respectively. In Theorem 23, we then proved that

quadratic invariance allows us to choose a controller parameterization such that the

information constraint is equivalent to an affine constraint on the Youla parameter.

Thus synthesizing optimal decentralized controllers becomes a convex optimization

problem.

We then applied this to some specific constraint classes. We provided a test

for sparsity constraints to be quadratically invariant, and thus amenable to convex

synthesis. We noted that symmetric synthesis is included in this classification. We

showed in Theorem 33 that for control over networks with delays, optimal controllers

may be synthesized in this manner if the communication delays are less than the

propagation delays. We further showed that this result still holds in the presence of

computational delays.

We thus characterized a broad and useful class of tractable decentralized control

problems, unifying many previous results regarding specific structures, and identifying

many new ones.
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